Multi-dimensional sequential pattern mining
Sequential pattern mining, which finds the set of frequent subsequences in sequence databases, is an important data-mining task and has broad applications. Usually, sequence patterns are associated with different circumstances, and such circumstances form a multiple dimensional space. For example, customer purchase sequences are associated with region, time, customer group, and others. It is interesting and useful to mine sequential patterns associated with multi-dimensional information. In this paper, we propose the theme of multi-dimensional sequential pattern mining, which integrates the multidimensional analysis and sequential data mining. We also thoroughly explore efficient methods for multi-dimensional sequential pattern mining. We examine feasible combinations of efficient sequential pattern mining and multidimensional analysis methods, as well as develop uniform methods for high-performance mining. Extensive experiments show the advantages as well as limitations of these methods. Some recommendations on selecting proper method with respect to data set properties are drawn.