Pushing convertible constraints in frequent itemset mining
Recent work has highlighted the importance of the constraint-based mining paradigm in the context of frequent itemsets, associations, correlations, sequential patterns, and many other interesting patterns in large databases. Constraint pushing techniques have been developed for mining frequent patterns and associations with antimonotonic, monotonic, and succinct constraints. In this paper, we study constraints which cannot be handled with existing theory and techniques in frequent pattern mining. For example, avg(S)θv, median(S)θv, sum(S)θv (S can contain items of arbitrary values, θ ε {>, <, ≤, ≥} and v is a real number.) are customarily regarded as "tough" constraints in that they cannot be pushed inside an algorithm such as Apriori. We develop a notion of convertible constraints and systematically analyze, classify, and characterize this class. We also develop techniques which enable them to be readily pushed deep inside the recently developed FP-growth algorithm for frequent itemset mining. Results from our detailed experiments show the effectiveness of the techniques developed.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences
- 0806 Information Systems
- 0804 Data Format
- 0801 Artificial Intelligence and Image Processing
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences
- 0806 Information Systems
- 0804 Data Format
- 0801 Artificial Intelligence and Image Processing