Dynamic magnetic response of the quark-gluon plasma to electromagnetic fields
We investigate the electromagnetic response of a viscous quark-gluon plasma in the framework of the relativistic Boltzmann equation with current conserving collision term. Our formalism incorporates dissipative effects at all orders in linear response to the electromagnetic field while accounting for the full space and time dependence of the perturbing fields. As an example, we consider the collision of two nuclei in a stationary, homogeneous quark-gluon plasma. We show that for large collision energies the induced magnetic fields are governed by the response of quark-gluon plasma along the light cone. In this limit, we derive an analytic expression for the magnetic field along the beam axis between the receding nuclei and show that its strength varies only weakly with collision energy for sNN≥30 GeV.