Skip to main content

Consistent responses of vegetation gas exchange to elevated atmospheric CO2 emerge from heuristic and optimization models

Publication ,  Journal Article
Manzoni, S; Fatichi, S; Feng, X; Katul, GG; Way, D; Vico, G
Published in: Biogeosciences
September 14, 2022

Elevated atmospheric CO2 concentration is expected to increase leaf CO2 assimilation rates, thus promoting plant growth and increasing leaf area. It also decreases stomatal conductance, allowing water savings, which have been hypothesized to drive large-scale greening, in particular in arid and semiarid climates. However, the increase in leaf area could reduce the benefits of elevated CO2 concentration through soil water depletion. The net effect of elevated CO2 on leaf- and canopy-level gas exchange remains uncertain. To address this question, we compare the outcomes of a heuristic model based on the Partitioning of Equilibrium Transpiration and Assimilation (PETA) hypothesis and three model variants based on stomatal optimization theory. Predicted relative changes in leaf- and canopy-level gas exchange rates are used as a metric of plant responses to changes in atmospheric CO2 concentration. Both model approaches predict reductions in leaf-level transpiration rate due to decreased stomatal conductance under elevated CO2, but negligible (PETA) or no (optimization) changes in canopy-level transpiration due to the compensatory effect of increased leaf area. Leaf- and canopy-level CO2 assimilation is predicted to increase, with an amplification of the CO2 fertilization effect at the canopy level due to the enhanced leaf area. The expected increase in vapour pressure deficit (VPD) under warmer conditions is generally predicted to decrease the sensitivity of gas exchange to atmospheric CO2 concentration in both models. The consistent predictions by different models that canopy-level transpiration varies little under elevated CO2 due to combined stomatal conductance reduction and leaf area increase highlight the coordination of physiological and morphological characteristics in vegetation to maximize resource use (here water) under altered climatic conditions.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Biogeosciences

DOI

EISSN

1726-4189

ISSN

1726-4170

Publication Date

September 14, 2022

Volume

19

Issue

17

Start / End Page

4387 / 4414

Related Subject Headings

  • Meteorology & Atmospheric Sciences
  • 4104 Environmental management
  • 3709 Physical geography and environmental geoscience
  • 3103 Ecology
  • 06 Biological Sciences
  • 05 Environmental Sciences
  • 04 Earth Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Manzoni, S., Fatichi, S., Feng, X., Katul, G. G., Way, D., & Vico, G. (2022). Consistent responses of vegetation gas exchange to elevated atmospheric CO2 emerge from heuristic and optimization models. Biogeosciences, 19(17), 4387–4414. https://doi.org/10.5194/bg-19-4387-2022
Manzoni, S., S. Fatichi, X. Feng, G. G. Katul, D. Way, and G. Vico. “Consistent responses of vegetation gas exchange to elevated atmospheric CO2 emerge from heuristic and optimization models.” Biogeosciences 19, no. 17 (September 14, 2022): 4387–4414. https://doi.org/10.5194/bg-19-4387-2022.
Manzoni S, Fatichi S, Feng X, Katul GG, Way D, Vico G. Consistent responses of vegetation gas exchange to elevated atmospheric CO2 emerge from heuristic and optimization models. Biogeosciences. 2022 Sep 14;19(17):4387–414.
Manzoni, S., et al. “Consistent responses of vegetation gas exchange to elevated atmospheric CO2 emerge from heuristic and optimization models.” Biogeosciences, vol. 19, no. 17, Sept. 2022, pp. 4387–414. Scopus, doi:10.5194/bg-19-4387-2022.
Manzoni S, Fatichi S, Feng X, Katul GG, Way D, Vico G. Consistent responses of vegetation gas exchange to elevated atmospheric CO2 emerge from heuristic and optimization models. Biogeosciences. 2022 Sep 14;19(17):4387–4414.

Published In

Biogeosciences

DOI

EISSN

1726-4189

ISSN

1726-4170

Publication Date

September 14, 2022

Volume

19

Issue

17

Start / End Page

4387 / 4414

Related Subject Headings

  • Meteorology & Atmospheric Sciences
  • 4104 Environmental management
  • 3709 Physical geography and environmental geoscience
  • 3103 Ecology
  • 06 Biological Sciences
  • 05 Environmental Sciences
  • 04 Earth Sciences