Skip to main content

Public Discourse and Sentiment Toward Dementia on Chinese Social Media: Machine Learning Analysis of Weibo Posts.

Publication ,  Journal Article
Kong, D; Chen, A; Zhang, J; Xiang, X; Lou, WQV; Kwok, T; Wu, B
Published in: Journal of medical Internet research
September 2022

Dementia is a global public health priority due to rapid growth of the aging population. As China has the world's largest population with dementia, this debilitating disease has created tremendous challenges for older adults, family caregivers, and health care systems on the mainland nationwide. However, public awareness and knowledge of the disease remain limited in Chinese society.This study examines online public discourse and sentiment toward dementia among the Chinese public on a leading Chinese social media platform Weibo. Specifically, this study aims to (1) assess and examine public discourse and sentiment toward dementia among the Chinese public, (2) determine the extent to which dementia-related discourse and sentiment vary among different user groups (ie, government, journalists/news media, scientists/experts, and the general public), and (3) characterize temporal trends in public discourse and sentiment toward dementia among different user groups in China over the past decade.In total, 983,039 original dementia-related posts published by 347,599 unique users between 2010 and 2021, together with their user information, were analyzed. Machine learning analytical techniques, including topic modeling, sentiment analysis, and semantic network analyses, were used to identify salient themes/topics and their variations across different user groups (ie, government, journalists/news media, scientists/experts, and the general public).Topic modeling results revealed that symptoms, prevention, and social support are the most prevalent dementia-related themes on Weibo. Posts about dementia policy/advocacy have been increasing in volume since 2018. Raising awareness is the least discussed topic over time. Sentiment analysis indicated that Weibo users generally attach negative attitudes/emotions to dementia, with the general public holding a more negative attitude than other user groups.Overall, dementia has received greater public attention on social media since 2018. In particular, discussions related to dementia advocacy and policy are gaining momentum in China. However, disparaging language is still used to describe dementia in China; therefore, a nationwide initiative is needed to alter the public discourse on dementia. The results contribute to previous research by providing a macrolevel understanding of the Chinese public's discourse and attitudes toward dementia, which is essential for building national education and policy initiatives to create a dementia-friendly society. Our findings indicate that dementia is associated with negative sentiments, and symptoms and prevention dominate public discourse. The development of strategies to address unfavorable perceptions of dementia requires policy and public health attention. The results further reveal that an urgent need exists to increase public knowledge about dementia. Social media platforms potentially could be leveraged for future dementia education interventions to increase dementia awareness and promote positive attitudes.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of medical Internet research

DOI

EISSN

1438-8871

ISSN

1439-4456

Publication Date

September 2022

Volume

24

Issue

9

Start / End Page

e39805

Related Subject Headings

  • Social Media
  • Medical Informatics
  • Machine Learning
  • Language
  • Humans
  • Dementia
  • China
  • Attitude
  • Aged
  • 4203 Health services and systems
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Kong, D., Chen, A., Zhang, J., Xiang, X., Lou, W. Q. V., Kwok, T., & Wu, B. (2022). Public Discourse and Sentiment Toward Dementia on Chinese Social Media: Machine Learning Analysis of Weibo Posts. Journal of Medical Internet Research, 24(9), e39805. https://doi.org/10.2196/39805
Kong, Dexia, Anfan Chen, Jingwen Zhang, Xiaoling Xiang, WQ Vivian Lou, Timothy Kwok, and Bei Wu. “Public Discourse and Sentiment Toward Dementia on Chinese Social Media: Machine Learning Analysis of Weibo Posts.Journal of Medical Internet Research 24, no. 9 (September 2022): e39805. https://doi.org/10.2196/39805.
Kong D, Chen A, Zhang J, Xiang X, Lou WQV, Kwok T, et al. Public Discourse and Sentiment Toward Dementia on Chinese Social Media: Machine Learning Analysis of Weibo Posts. Journal of medical Internet research. 2022 Sep;24(9):e39805.
Kong, Dexia, et al. “Public Discourse and Sentiment Toward Dementia on Chinese Social Media: Machine Learning Analysis of Weibo Posts.Journal of Medical Internet Research, vol. 24, no. 9, Sept. 2022, p. e39805. Epmc, doi:10.2196/39805.
Kong D, Chen A, Zhang J, Xiang X, Lou WQV, Kwok T, Wu B. Public Discourse and Sentiment Toward Dementia on Chinese Social Media: Machine Learning Analysis of Weibo Posts. Journal of medical Internet research. 2022 Sep;24(9):e39805.

Published In

Journal of medical Internet research

DOI

EISSN

1438-8871

ISSN

1439-4456

Publication Date

September 2022

Volume

24

Issue

9

Start / End Page

e39805

Related Subject Headings

  • Social Media
  • Medical Informatics
  • Machine Learning
  • Language
  • Humans
  • Dementia
  • China
  • Attitude
  • Aged
  • 4203 Health services and systems