Burgess bounds for short character sums evaluated at forms II: the mixed case
Publication
, Journal Article
Pierce, LB
Published in: Rivista Di Matematica Della Universita Di Parma
January 1, 2021
This work proves a Burgess bound for short mixed character sums in n dimensions. The non-principal multiplicative character of prime conductor q may be evaluated at any "admissible" form, and the additive character may be evaluated at any real-valued polynomial. The resulting upper bound for the mixed character sum is nontrivial when the length of the sum is at least qβwith β > 1/2 - 1/(2(n + 1)) in each coordinate. This work capitalizes on the recent stratification of multiplicative character sums due to Xu, and the resolution of the Vinogradov Mean Value Theorem in arbitrary dimensions.
Duke Scholars
Published In
Rivista Di Matematica Della Universita Di Parma
EISSN
2284-2578
ISSN
0035-6298
Publication Date
January 1, 2021
Volume
12
Issue
1
Start / End Page
151 / 179
Related Subject Headings
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Pierce, L. B. (2021). Burgess bounds for short character sums evaluated at forms II: the mixed case. Rivista Di Matematica Della Universita Di Parma, 12(1), 151–179.
Pierce, L. B. “Burgess bounds for short character sums evaluated at forms II: the mixed case.” Rivista Di Matematica Della Universita Di Parma 12, no. 1 (January 1, 2021): 151–79.
Pierce LB. Burgess bounds for short character sums evaluated at forms II: the mixed case. Rivista Di Matematica Della Universita Di Parma. 2021 Jan 1;12(1):151–79.
Pierce, L. B. “Burgess bounds for short character sums evaluated at forms II: the mixed case.” Rivista Di Matematica Della Universita Di Parma, vol. 12, no. 1, Jan. 2021, pp. 151–79.
Pierce LB. Burgess bounds for short character sums evaluated at forms II: the mixed case. Rivista Di Matematica Della Universita Di Parma. 2021 Jan 1;12(1):151–179.
Published In
Rivista Di Matematica Della Universita Di Parma
EISSN
2284-2578
ISSN
0035-6298
Publication Date
January 1, 2021
Volume
12
Issue
1
Start / End Page
151 / 179
Related Subject Headings
- 4904 Pure mathematics
- 0101 Pure Mathematics