Skip to main content
Journal cover image

Turaev torsion invariants of 3-orbifolds

Publication ,  Journal Article
Wong, B
Published in: Geometriae Dedicata
April 1, 2017

We construct a combinatorial invariant of 3-orbifolds with singular set a link that generalizes the Turaev torsion invariant of 3-manifolds. We give several gluing formulas from which we derive two consequences. The first is an understanding of how the components of the invariant change when we remove a curve from the singular set. The second is a formula relating the invariant of the 3-orbifold to the Turaev torsion invariant of the underlying 3-manifold in the case when the singular set is a nullhomologous knot.

Duke Scholars

Published In

Geometriae Dedicata

DOI

EISSN

1572-9168

ISSN

0046-5755

Publication Date

April 1, 2017

Volume

187

Issue

1

Start / End Page

179 / 197

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Wong, B. (2017). Turaev torsion invariants of 3-orbifolds. Geometriae Dedicata, 187(1), 179–197. https://doi.org/10.1007/s10711-016-0196-7
Wong, B. “Turaev torsion invariants of 3-orbifolds.” Geometriae Dedicata 187, no. 1 (April 1, 2017): 179–97. https://doi.org/10.1007/s10711-016-0196-7.
Wong B. Turaev torsion invariants of 3-orbifolds. Geometriae Dedicata. 2017 Apr 1;187(1):179–97.
Wong, B. “Turaev torsion invariants of 3-orbifolds.” Geometriae Dedicata, vol. 187, no. 1, Apr. 2017, pp. 179–97. Scopus, doi:10.1007/s10711-016-0196-7.
Wong B. Turaev torsion invariants of 3-orbifolds. Geometriae Dedicata. 2017 Apr 1;187(1):179–197.
Journal cover image

Published In

Geometriae Dedicata

DOI

EISSN

1572-9168

ISSN

0046-5755

Publication Date

April 1, 2017

Volume

187

Issue

1

Start / End Page

179 / 197

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics