Turaev torsion invariants of 3-orbifolds
Publication
, Journal Article
Wong, B
Published in: Geometriae Dedicata
April 1, 2017
We construct a combinatorial invariant of 3-orbifolds with singular set a link that generalizes the Turaev torsion invariant of 3-manifolds. We give several gluing formulas from which we derive two consequences. The first is an understanding of how the components of the invariant change when we remove a curve from the singular set. The second is a formula relating the invariant of the 3-orbifold to the Turaev torsion invariant of the underlying 3-manifold in the case when the singular set is a nullhomologous knot.
Duke Scholars
Published In
Geometriae Dedicata
DOI
EISSN
1572-9168
ISSN
0046-5755
Publication Date
April 1, 2017
Volume
187
Issue
1
Start / End Page
179 / 197
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Wong, B. (2017). Turaev torsion invariants of 3-orbifolds. Geometriae Dedicata, 187(1), 179–197. https://doi.org/10.1007/s10711-016-0196-7
Wong, B. “Turaev torsion invariants of 3-orbifolds.” Geometriae Dedicata 187, no. 1 (April 1, 2017): 179–97. https://doi.org/10.1007/s10711-016-0196-7.
Wong B. Turaev torsion invariants of 3-orbifolds. Geometriae Dedicata. 2017 Apr 1;187(1):179–97.
Wong, B. “Turaev torsion invariants of 3-orbifolds.” Geometriae Dedicata, vol. 187, no. 1, Apr. 2017, pp. 179–97. Scopus, doi:10.1007/s10711-016-0196-7.
Wong B. Turaev torsion invariants of 3-orbifolds. Geometriae Dedicata. 2017 Apr 1;187(1):179–197.
Published In
Geometriae Dedicata
DOI
EISSN
1572-9168
ISSN
0046-5755
Publication Date
April 1, 2017
Volume
187
Issue
1
Start / End Page
179 / 197
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics