Skip to main content

Twisted Mazur Pattern Satellite Knots & Bordered Floer Theory

Publication ,  Journal Article
Petkova, I; Wong, B
Published in: Michigan Mathematical Journal
May 1, 2023

We use bordered Floer theory to study properties of twisted Mazur pattern satellite knots Qn(K). We prove that Qn(K) is not Floer homologically thin, with two exceptions. We calculate the 3-genus of Qn(K) in terms of the twisting parameter n and the 3-genus of the companion K, and we determine when Qn(K) is fibered. As an application to our results on Floer thickness and 3-genus, we verify the Cosmetic Surgery Conjecture for many of these satellite knots.

Duke Scholars

Published In

Michigan Mathematical Journal

DOI

EISSN

1945-2365

ISSN

0026-2285

Publication Date

May 1, 2023

Volume

73

Issue

2

Start / End Page

255 / 304

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Petkova, I., & Wong, B. (2023). Twisted Mazur Pattern Satellite Knots & Bordered Floer Theory. Michigan Mathematical Journal, 73(2), 255–304. https://doi.org/10.1307/mmj/20205927
Petkova, I., and B. Wong. “Twisted Mazur Pattern Satellite Knots & Bordered Floer Theory.” Michigan Mathematical Journal 73, no. 2 (May 1, 2023): 255–304. https://doi.org/10.1307/mmj/20205927.
Petkova I, Wong B. Twisted Mazur Pattern Satellite Knots & Bordered Floer Theory. Michigan Mathematical Journal. 2023 May 1;73(2):255–304.
Petkova, I., and B. Wong. “Twisted Mazur Pattern Satellite Knots & Bordered Floer Theory.” Michigan Mathematical Journal, vol. 73, no. 2, May 2023, pp. 255–304. Scopus, doi:10.1307/mmj/20205927.
Petkova I, Wong B. Twisted Mazur Pattern Satellite Knots & Bordered Floer Theory. Michigan Mathematical Journal. 2023 May 1;73(2):255–304.

Published In

Michigan Mathematical Journal

DOI

EISSN

1945-2365

ISSN

0026-2285

Publication Date

May 1, 2023

Volume

73

Issue

2

Start / End Page

255 / 304

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics