Skip to main content

A Novel 3D Unsupervised Domain Adaptation Framework for Cross-Modality Medical Image Segmentation.

Publication ,  Journal Article
Yao, K; Su, Z; Huang, K; Yang, X; Sun, J; Hussain, A; Coenen, F
Published in: IEEE journal of biomedical and health informatics
October 2022

We consider the problem of volumetric (3D) unsupervised domain adaptation (UDA) in cross-modality medical image segmentation, aiming to perform segmentation on the unannotated target domain (e.g. MRI) with the help of labeled source domain (e.g. CT). Previous UDA methods in medical image analysis usually suffer from two challenges: 1) they focus on processing and analyzing data at 2D level only, thus missing semantic information from the depth level; 2) one-to-one mapping is adopted during the style-transfer process, leading to insufficient alignment in the target domain. Different from the existing methods, in our work, we conduct a first of its kind investigation on multi-style image translation for complete image alignment to alleviate the domain shift problem, and also introduce 3D segmentation in domain adaptation tasks to maintain semantic consistency at the depth level. In particular, we develop an unsupervised domain adaptation framework incorporating a novel quartet self-attention module to efficiently enhance relationships between widely separated features in spatial regions on a higher dimension, leading to a substantial improvement in segmentation accuracy in the unlabeled target domain. In two challenging cross-modality tasks, specifically brain structures and multi-organ abdominal segmentation, our model is shown to outperform current state-of-the-art methods by a significant margin, demonstrating its potential as a benchmark resource for the biomedical and health informatics research community.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

IEEE journal of biomedical and health informatics

DOI

EISSN

2168-2208

ISSN

2168-2194

Publication Date

October 2022

Volume

26

Issue

10

Start / End Page

4976 / 4986

Related Subject Headings

  • Magnetic Resonance Imaging
  • Image Processing, Computer-Assisted
  • Humans
  • Brain
  • Abdomen
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Yao, K., Su, Z., Huang, K., Yang, X., Sun, J., Hussain, A., & Coenen, F. (2022). A Novel 3D Unsupervised Domain Adaptation Framework for Cross-Modality Medical Image Segmentation. IEEE Journal of Biomedical and Health Informatics, 26(10), 4976–4986. https://doi.org/10.1109/jbhi.2022.3162118
Yao, Kai, Zixian Su, Kaizhu Huang, Xi Yang, Jie Sun, Amir Hussain, and Frans Coenen. “A Novel 3D Unsupervised Domain Adaptation Framework for Cross-Modality Medical Image Segmentation.IEEE Journal of Biomedical and Health Informatics 26, no. 10 (October 2022): 4976–86. https://doi.org/10.1109/jbhi.2022.3162118.
Yao K, Su Z, Huang K, Yang X, Sun J, Hussain A, et al. A Novel 3D Unsupervised Domain Adaptation Framework for Cross-Modality Medical Image Segmentation. IEEE journal of biomedical and health informatics. 2022 Oct;26(10):4976–86.
Yao, Kai, et al. “A Novel 3D Unsupervised Domain Adaptation Framework for Cross-Modality Medical Image Segmentation.IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 10, Oct. 2022, pp. 4976–86. Epmc, doi:10.1109/jbhi.2022.3162118.
Yao K, Su Z, Huang K, Yang X, Sun J, Hussain A, Coenen F. A Novel 3D Unsupervised Domain Adaptation Framework for Cross-Modality Medical Image Segmentation. IEEE journal of biomedical and health informatics. 2022 Oct;26(10):4976–4986.

Published In

IEEE journal of biomedical and health informatics

DOI

EISSN

2168-2208

ISSN

2168-2194

Publication Date

October 2022

Volume

26

Issue

10

Start / End Page

4976 / 4986

Related Subject Headings

  • Magnetic Resonance Imaging
  • Image Processing, Computer-Assisted
  • Humans
  • Brain
  • Abdomen