Denary oxide nanoparticles as highly stable catalysts for methane combustion
Oxide nanoparticles with elemental and structural diversity are widely studied for catalysis and energy applications. While compositional control holds great promise for materials discovery, current oxide nanoparticles are typically limited to a few cations due to the intrinsic complexity in nanoscale multi-element mixing. Here we report the rational design and synthesis of single-phase multi-element oxide nanoparticles with tunable composition, size and structure. We have identified temperature-, oxidation- and entropy-driven synthesis strategies to mix a range of elements with largely dissimilar oxidation potentials (including palladium), thus greatly expanding the compositional space. Through rapid synthesis and screening, we obtained a denary multi-element oxide catalyst showing high performance and superior stability for catalytic methane combustion over 100 hours due to the high-entropy design and stabilization. Our work therefore provides a viable synthesis route with clear guidelines for multi-element oxide nanoparticles and enables materials design in the multi-element space towards highly stable catalysts. [Figure not available: see fulltext.]
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 4004 Chemical engineering
- 3406 Physical chemistry
- 3402 Inorganic chemistry
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 4004 Chemical engineering
- 3406 Physical chemistry
- 3402 Inorganic chemistry