Structural variability of edge dislocations in a SrTiO 3 low-angle [001] tilt grain boundary
Using a spherical aberration (Cs)-corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS), we investigated a 6° low-angle [001] tilt grain boundary in SrTiO 3. The enhanced spatial resolution of the aberration corrector leads to the observation of a number of structural variations in the edge dislocations along the grain boundary that neither resemble the standard edge dislocations nor partial dislocations for SrTiO 3. Although there appear to be many variants in the structure that can be interpreted as compositional effects, three main classes of core structure are found to be prominent. From EELS analysis, these classifications seem to be related to Sr deficiencies, with the final variety of the cores being consistent with an embedded TiO x rocksalt-like structure. © 2009 Materials Research Society.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Materials
- 5104 Condensed matter physics
- 4017 Mechanical engineering
- 4016 Materials engineering
- 0913 Mechanical Engineering
- 0912 Materials Engineering
- 0204 Condensed Matter Physics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Materials
- 5104 Condensed matter physics
- 4017 Mechanical engineering
- 4016 Materials engineering
- 0913 Mechanical Engineering
- 0912 Materials Engineering
- 0204 Condensed Matter Physics