Effect of buffer termination on intermixing and conductivity in LaTiO3/SrTiO3heterostructures integrated on Si(100)
The control of chemical exchange across heterointerfaces formed between ultrathin functional transition-metal oxide layers provides an effective route to manipulate the electronic properties of these systems. By determining the layer-resolved structural profile across the interface between the Mott insulator, LaTiO3 (LTO) grown epitaxially on SrTiO3 (STO)-buffered silicon by molecular beam epitaxy, we find that interfacial cationic exchange depends on the surface termination of the strained STO buffer. Using a combination of temperature-dependent transport and synchrotron x-ray crystal truncation rods and reciprocal space mapping, an enhanced conductivity in STO/LTO/SrO-terminated STO buffers compared to heterostructures with TiO 2-terminated STO buffers is correlated with La/Sr exchange and the formation of metallic La 1 - xSr xTiO 3. La/Sr exchange effectively reduces the strain energy of the system due to the large lattice mismatch between the nominal oxide layers and the Si substrate.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences