Skip to main content
Journal cover image

Deep Learning for Breast MRI Style Transfer with Limited Training Data.

Publication ,  Journal Article
Cao, S; Konz, N; Duncan, J; Mazurowski, MA
Published in: J Digit Imaging
April 2023

In this work we introduce a novel medical image style transfer method, StyleMapper, that can transfer medical scans to an unseen style with access to limited training data. This is made possible by training our model on unlimited possibilities of simulated random medical imaging styles on the training set, making our work more computationally efficient when compared with other style transfer methods. Moreover, our method enables arbitrary style transfer: transferring images to styles unseen in training. This is useful for medical imaging, where images are acquired using different protocols and different scanner models, resulting in a variety of styles that data may need to be transferred between. Our model disentangles image content from style and can modify an image's style by simply replacing the style encoding with one extracted from a single image of the target style, with no additional optimization required. This also allows the model to distinguish between different styles of images, including among those that were unseen in training. We propose a formal description of the proposed model. Experimental results on breast magnetic resonance images indicate the effectiveness of our method for style transfer. Our style transfer method allows for the alignment of medical images taken with different scanners into a single unified style dataset, allowing for the training of other downstream tasks on such a dataset for tasks such as classification, object detection and others.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Digit Imaging

DOI

EISSN

1618-727X

Publication Date

April 2023

Volume

36

Issue

2

Start / End Page

666 / 678

Location

United States

Related Subject Headings

  • Radiography
  • Nuclear Medicine & Medical Imaging
  • Magnetic Resonance Imaging
  • Image Processing, Computer-Assisted
  • Humans
  • Deep Learning
  • 3202 Clinical sciences
  • 1103 Clinical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Cao, S., Konz, N., Duncan, J., & Mazurowski, M. A. (2023). Deep Learning for Breast MRI Style Transfer with Limited Training Data. J Digit Imaging, 36(2), 666–678. https://doi.org/10.1007/s10278-022-00755-z
Cao, Shixing, Nicholas Konz, James Duncan, and Maciej A. Mazurowski. “Deep Learning for Breast MRI Style Transfer with Limited Training Data.J Digit Imaging 36, no. 2 (April 2023): 666–78. https://doi.org/10.1007/s10278-022-00755-z.
Cao S, Konz N, Duncan J, Mazurowski MA. Deep Learning for Breast MRI Style Transfer with Limited Training Data. J Digit Imaging. 2023 Apr;36(2):666–78.
Cao, Shixing, et al. “Deep Learning for Breast MRI Style Transfer with Limited Training Data.J Digit Imaging, vol. 36, no. 2, Apr. 2023, pp. 666–78. Pubmed, doi:10.1007/s10278-022-00755-z.
Cao S, Konz N, Duncan J, Mazurowski MA. Deep Learning for Breast MRI Style Transfer with Limited Training Data. J Digit Imaging. 2023 Apr;36(2):666–678.
Journal cover image

Published In

J Digit Imaging

DOI

EISSN

1618-727X

Publication Date

April 2023

Volume

36

Issue

2

Start / End Page

666 / 678

Location

United States

Related Subject Headings

  • Radiography
  • Nuclear Medicine & Medical Imaging
  • Magnetic Resonance Imaging
  • Image Processing, Computer-Assisted
  • Humans
  • Deep Learning
  • 3202 Clinical sciences
  • 1103 Clinical Sciences