Skip to main content

TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization

Publication ,  Conference
Wang, ZJ; Zhong, C; Xin, R; Takagi, T; Chen, Z; Chau, DH; Rudin, C; Seltzer, M
Published in: Proceedings - 2022 IEEE Visualization Conference - Short Papers, VIS 2022
January 1, 2022

Given thousands of equally accurate machine learning (ML) models, how can users choose among them? A recent ML technique enables domain experts and data scientists to generate a complete Rashomon set for sparse decision trees-a huge set of almost-optimal inter-pretable ML models. To help ML practitioners identify models with desirable properties from this Rashomon set, we develop Tim-bertrek, the first interactive visualization system that summarizes thousands of sparse decision trees at scale. Two usage scenarios high-light how Timbertrek can empower users to easily explore, compare, and curate models that align with their domain knowledge and values. Our open-source tool runs directly in users' computational notebooks and web browsers, lowering the barrier to creating more responsible ML models. Timbertrek is available at the following public demo link: https: //poloclub. github. io/timbertrek.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Proceedings - 2022 IEEE Visualization Conference - Short Papers, VIS 2022

DOI

Publication Date

January 1, 2022

Start / End Page

60 / 64
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Wang, Z. J., Zhong, C., Xin, R., Takagi, T., Chen, Z., Chau, D. H., … Seltzer, M. (2022). TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization. In Proceedings - 2022 IEEE Visualization Conference - Short Papers, VIS 2022 (pp. 60–64). https://doi.org/10.1109/VIS54862.2022.00021
Wang, Z. J., C. Zhong, R. Xin, T. Takagi, Z. Chen, D. H. Chau, C. Rudin, and M. Seltzer. “TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization.” In Proceedings - 2022 IEEE Visualization Conference - Short Papers, VIS 2022, 60–64, 2022. https://doi.org/10.1109/VIS54862.2022.00021.
Wang ZJ, Zhong C, Xin R, Takagi T, Chen Z, Chau DH, et al. TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization. In: Proceedings - 2022 IEEE Visualization Conference - Short Papers, VIS 2022. 2022. p. 60–4.
Wang, Z. J., et al. “TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization.” Proceedings - 2022 IEEE Visualization Conference - Short Papers, VIS 2022, 2022, pp. 60–64. Scopus, doi:10.1109/VIS54862.2022.00021.
Wang ZJ, Zhong C, Xin R, Takagi T, Chen Z, Chau DH, Rudin C, Seltzer M. TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization. Proceedings - 2022 IEEE Visualization Conference - Short Papers, VIS 2022. 2022. p. 60–64.

Published In

Proceedings - 2022 IEEE Visualization Conference - Short Papers, VIS 2022

DOI

Publication Date

January 1, 2022

Start / End Page

60 / 64