Skip to main content

Mass measurements of neutron-rich indium isotopes for r -process studies

Publication ,  Journal Article
Izzo, C; Bergmann, J; Dietrich, KA; Dunling, E; Fusco, D; Jacobs, A; Kootte, B; Kripkó-Koncz, G; Lan, Y; Leistenschneider, E; Mukul, I ...
Published in: Physical Review C
February 1, 2021

A new series of neutron-rich indium mass measurements is reported from the TITAN multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). These mass measurements cover In125-134 (N=76-85) and include ground states as well as isomeric states. The masses of nuclei in this region are known to be of great importance for accurately modeling r-process nucleosynthesis, and the significance of the reported neutron-rich indium masses is discussed in this context. Results are compared with earlier experimental data where available as well as theoretical mass models. The measurements reported here include the first mass measurements of In133,134, as well as the first direct mass measurement of In132. The masses of In125-131 ground states and several isomers were previously measured to higher precision by Penning trap mass spectrometry, which also resolved some low-lying isomers that could not be resolved in this work. The earlier Penning trap measurements serve as excellent cross-checks for the MR-TOF-MS measurements, and in some cases the MR-TOF-MS measurements improve the literature uncertainties of higher-lying isomer masses and excitation energies. A new isomeric state for In128, recently reported for the first time by the JYFLTRAP group, is also confirmed by the TITAN MR-TOF-MS, with a measured excitation energy of 1813(17) keV.

Duke Scholars

Published In

Physical Review C

DOI

EISSN

2469-9993

ISSN

2469-9985

Publication Date

February 1, 2021

Volume

103

Issue

2

Related Subject Headings

  • 5106 Nuclear and plasma physics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Izzo, C., Bergmann, J., Dietrich, K. A., Dunling, E., Fusco, D., Jacobs, A., … Kwiatkowski, A. A. (2021). Mass measurements of neutron-rich indium isotopes for r -process studies. Physical Review C, 103(2). https://doi.org/10.1103/PhysRevC.103.025811
Izzo, C., J. Bergmann, K. A. Dietrich, E. Dunling, D. Fusco, A. Jacobs, B. Kootte, et al. “Mass measurements of neutron-rich indium isotopes for r -process studies.” Physical Review C 103, no. 2 (February 1, 2021). https://doi.org/10.1103/PhysRevC.103.025811.
Izzo C, Bergmann J, Dietrich KA, Dunling E, Fusco D, Jacobs A, et al. Mass measurements of neutron-rich indium isotopes for r -process studies. Physical Review C. 2021 Feb 1;103(2).
Izzo, C., et al. “Mass measurements of neutron-rich indium isotopes for r -process studies.” Physical Review C, vol. 103, no. 2, Feb. 2021. Scopus, doi:10.1103/PhysRevC.103.025811.
Izzo C, Bergmann J, Dietrich KA, Dunling E, Fusco D, Jacobs A, Kootte B, Kripkó-Koncz G, Lan Y, Leistenschneider E, Lykiardopoulou EM, Mukul I, Paul SF, Reiter MP, Tracy JL, Andreoiu C, Brunner T, Dickel T, Dilling J, Dillmann I, Gwinner G, Lascar D, Leach KG, Plaß WR, Scheidenberger C, Wieser ME, Kwiatkowski AA. Mass measurements of neutron-rich indium isotopes for r -process studies. Physical Review C. 2021 Feb 1;103(2).

Published In

Physical Review C

DOI

EISSN

2469-9993

ISSN

2469-9985

Publication Date

February 1, 2021

Volume

103

Issue

2

Related Subject Headings

  • 5106 Nuclear and plasma physics