Precision Mass Measurements of Neutron-Rich Scandium Isotopes Refine the Evolution of N=32 and N=34 Shell Closures.
We report high-precision mass measurements of ^{50-55}Sc isotopes performed at the LEBIT facility at NSCL and at the TITAN facility at TRIUMF. Our results provide a substantial reduction of their uncertainties and indicate significant deviations, up to 0.7 MeV, from the previously recommended mass values for ^{53-55}Sc. The results of this work provide an important update to the description of emerging closed-shell phenomena at neutron numbers N=32 and N=34 above proton-magic Z=20. In particular, they finally enable a complete and precise characterization of the trends in ground state binding energies along the N=32 isotone, confirming that the empirical neutron shell gap energies peak at the doubly magic ^{52}Ca. Moreover, our data, combined with other recent measurements, do not support the existence of a closed neutron shell in ^{55}Sc at N=34. The results were compared to predictions from both ab initio and phenomenological nuclear theories, which all had success describing N=32 neutron shell gap energies but were highly disparate in the description of the N=34 isotone.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences