Weak interaction symmetries with atom traps
Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of weak interaction experiments with radioactive isotopes. For nuclear β decay, demonstrated trap techniques include neutrino momentum measurements from beta-recoil coincidences, along with methods to produce highly polarized samples. These techniques enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, search for 2nd-class tensor and other tensor interactions, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Berkeley, and Los Alamos will be highlighted. Trap experiments involving fundamental symmetries in atomic physics, such as time-reversal violating electric dipole moments and neutral current weak interactions, will be briefly mentioned. © Società Italiana di Fisica / Springer-Verlag 2005.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nuclear & Particles Physics
- 5110 Synchrotrons and accelerators
- 5107 Particle and high energy physics
- 5106 Nuclear and plasma physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nuclear & Particles Physics
- 5110 Synchrotrons and accelerators
- 5107 Particle and high energy physics
- 5106 Nuclear and plasma physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics