Skip to main content
release_alert
Welcome to the new Scholars 3.0! Read about new features and let us know what you think.
cancel
American Chemical Society (ACS)

Interpretable Molecular Property Predictions Using Marginalized Graph Kernels

Publication ,  Preprint
Xiang, Y; Tang, Y-H; Lin, G; Reker, D
February 20, 2023

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

DOI

Publication Date

February 20, 2023
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Xiang, Y., Tang, Y.-H., Lin, G., & Reker, D. (2023). Interpretable Molecular Property Predictions Using Marginalized Graph Kernels. American Chemical Society (ACS). https://doi.org/10.26434/chemrxiv-2023-gd1gl
Xiang, Yan, Yu-Hang Tang, Guang Lin, and Daniel Reker. “Interpretable Molecular Property Predictions Using Marginalized Graph Kernels.” American Chemical Society (ACS), February 20, 2023. https://doi.org/10.26434/chemrxiv-2023-gd1gl.
Xiang Y, Tang Y-H, Lin G, Reker D. Interpretable Molecular Property Predictions Using Marginalized Graph Kernels. American Chemical Society (ACS). 2023.
Xiang, Yan, et al. “Interpretable Molecular Property Predictions Using Marginalized Graph Kernels.” American Chemical Society (ACS), 20 Feb. 2023. Crossref, doi:10.26434/chemrxiv-2023-gd1gl.
Xiang Y, Tang Y-H, Lin G, Reker D. Interpretable Molecular Property Predictions Using Marginalized Graph Kernels. American Chemical Society (ACS). 2023.

DOI

Publication Date

February 20, 2023