Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks
We propose new, more efficient targeted white-box attacks against deep neural networks. Our attacks better align with the attacker's goal: (1) tricking a model to assign higher probability to the target class than to any other class, while (2) staying within an ε-distance of the attacked input. First, we demonstrate a loss function that explicitly encodes (1) and show that Auto-PGD finds more attacks with it. Second, we propose a new attack method, Constrained Gradient Descent (CGD), using a refinement of our loss function that captures both (1) and (2). CGD seeks to satisfy both attacker objectives-misclassification and bounded ℓ