Reed-Muller Codes on BMS Channels Achieve Vanishing Bit-Error Probability for all Rates Below Capacity
This paper considers the performance of Reed-Muller (RM) codes transmitted over binary memoryless symmetric (BMS) channels under bitwise maximum-a-posteriori (bit-MAP) decoding. Its main result is that, for a fixed BMS channel, the family of binary RM codes can achieve a vanishing bit-error probability at rates approaching the channel capacity. This partially resolves a long-standing open problem that connects information theory and error-correcting codes. In contrast with the earlier result for the binary erasure channel, the new proof does not rely on hypercontractivity. Instead, it combines a nesting property of RM codes with new information inequalities relating the generalized extrinsic information transfer function and the extrinsic minimum mean-squared error.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 4613 Theory of computation
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0801 Artificial Intelligence and Image Processing
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 4613 Theory of computation
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0801 Artificial Intelligence and Image Processing