Study Membrane Solarelasticity Using a Wave Model and a Corpuscular Model of Light
The difference between solarelastic interaction and aeroelastic interaction is illustrated from the perspective of external forces. Membrane solarelastic responses of the solar cell and solar sail are studied through a wave model and a corpuscular model of light, respectively, where the light intensity and phase are considered in the wave model to calculate the solar radiation pressure but the phase of light is neglected in the corpuscular model. The effects of the membrane optical properties, the thickness, and the size on the solarelastic flutter instability are investigated. The solar radiation pressure is divided into a part depending on the sail deformation and a part independent of sail deformation to investigate their respective influences. The results show that the former terms result in membrane flutter and the latter term results in membrane static deflection. A comparison is conducted between the wave model and the corpuscular model on the flutter boundaries and membrane responses. The membrane reflectivity is coupled with membrane stiffness by the membrane thickness in the wave model, but it is uncoupled in the corpuscular model. Therefore, the wave model has an advantage over the corpuscular model when evaluating the thickness effect of membrane reflectivity.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Aerospace & Aeronautics
- 4012 Fluid mechanics and thermal engineering
- 4001 Aerospace engineering
- 0913 Mechanical Engineering
- 0905 Civil Engineering
- 0901 Aerospace Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Aerospace & Aeronautics
- 4012 Fluid mechanics and thermal engineering
- 4001 Aerospace engineering
- 0913 Mechanical Engineering
- 0905 Civil Engineering
- 0901 Aerospace Engineering