Kinetic simulation technique for plasma flow in strong external magnetic field
A technique for the kinetic simulation of plasma flow in strong external magnetic fields was developed which captures the compression and expansion of plasma bound to a magnetic flux tube as well as forces on magnetized particles within the flux tube. This quasi-one-dimensional (Q1D) method resolves a single spatial dimension while modeling two-dimensional effects. The implementation of this method in a Particle-In-Cell (PIC) code was verified with newly formulated test cases which include two-particle motion and particle dynamics in a magnetic mirror. Results from the Q1D method and fully two dimensional simulations were compared and error analyses performed verifying that the Q1D model reproduces the fully 2D results in the correct regimes. The Q1D method was found to be valid when the hybrid Larmor radius was less than 10% of the magnetic field scale length for magnetic field guided plasma expansions and less than 1% of the magnetic field scale length for a plasma in a converging–diverging magnetic field. The simple and general Q1D method can readily be incorporated in standard 1D PIC codes to capture multi-dimensional effects for plasma flow along magnetic fields in parameter spaces currently inaccessible by fully kinetic methods.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Applied Mathematics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Applied Mathematics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences