Skip to main content
Journal cover image

Anode power deposition in magnetoplasmadynamic thrusters

Publication ,  Journal Article
Gallimore, AD; Kelly, AJ; Jahn, RG
Published in: Journal of Propulsion and Power
January 1, 1993

Results of anode heat-flux and anode fall measurements from a multimegawatt self-field quasisteady magnetoplasmadynamic (MPD) thruster are presented. Measurements were obtained with argon and helium propellants for a variety of currents and mass flow rates. Anode heat flux was directly measured with thermocouplesattached to the inner surface of a hollowed section. Anode falls were determined both from floating probes and through heat flux measurements. Comparison of data acquired through either method shows excellent agreement. Anode falls varied between 4-50 V with anode power fractions reaching 70% with helium at 150 kW, and 50% with argon at 1.9 MW. The anode fall was found to correlate well with electron Hall parameters calculated from triple Langmuir and magnetic probe data collected near the anode. Two possible explanations for this result are proposed: 1) the establishment of large electric fields at the anode to maintain current conduction across the strong magnetic fields; and 2) anomalous resistivity resulting from the onset of microturbulence inthe plasma. To investigate the latter hypothesis, electric field, magnetic field, and current density profiles measured in the vicinity of the anode were incorporated into Ohm’s law to estimate the electrical conductivity. Results of this analysis show a substantial deviation of the measured conductivity from that calculated with classical formulas. These results imply that anomalous effects are present in the plasma near the anode. © 1993, American Institute of Aeronautics and Astronautics, Inc., All rights reserved.

Duke Scholars

Published In

Journal of Propulsion and Power

DOI

ISSN

0748-4658

Publication Date

January 1, 1993

Volume

9

Issue

3

Start / End Page

361 / 368

Related Subject Headings

  • Aerospace & Aeronautics
  • 4001 Aerospace engineering
  • 0913 Mechanical Engineering
  • 0901 Aerospace Engineering
  • 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Gallimore, A. D., Kelly, A. J., & Jahn, R. G. (1993). Anode power deposition in magnetoplasmadynamic thrusters. Journal of Propulsion and Power, 9(3), 361–368. https://doi.org/10.2514/3.23630
Gallimore, A. D., A. J. Kelly, and R. G. Jahn. “Anode power deposition in magnetoplasmadynamic thrusters.” Journal of Propulsion and Power 9, no. 3 (January 1, 1993): 361–68. https://doi.org/10.2514/3.23630.
Gallimore AD, Kelly AJ, Jahn RG. Anode power deposition in magnetoplasmadynamic thrusters. Journal of Propulsion and Power. 1993 Jan 1;9(3):361–8.
Gallimore, A. D., et al. “Anode power deposition in magnetoplasmadynamic thrusters.” Journal of Propulsion and Power, vol. 9, no. 3, Jan. 1993, pp. 361–68. Scopus, doi:10.2514/3.23630.
Gallimore AD, Kelly AJ, Jahn RG. Anode power deposition in magnetoplasmadynamic thrusters. Journal of Propulsion and Power. 1993 Jan 1;9(3):361–368.
Journal cover image

Published In

Journal of Propulsion and Power

DOI

ISSN

0748-4658

Publication Date

January 1, 1993

Volume

9

Issue

3

Start / End Page

361 / 368

Related Subject Headings

  • Aerospace & Aeronautics
  • 4001 Aerospace engineering
  • 0913 Mechanical Engineering
  • 0901 Aerospace Engineering
  • 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics