Skip to main content

Dormant cathode erosion in a multiple-cathode gridded ion thruster

Publication ,  Journal Article
Rovey, JL; Gallimore, AD
Published in: Journal of Propulsion and Power
January 1, 2008

A rectangular gridded ion thruster discharge chamber is investigated for operation with multiple discharge cathode assemblies. The multiple-cathode approach attempts to increase thruster throughput and lifetime by operating three discharge cathode assemblies sequentially, possibly providing a threefold increase in discharge chamber life. Previous multiple-cathode electric propulsion devices, such as the SPT-100, have shown dormantcathode erosion to be a life-limiting phenomenon. Similar results in a multiple-cathode discharge chamber may decrease the anticipated gain in discharge lifetime. To assess possible dormant-cathode sputtering erosion and to determine the operational configuration that minimizes this erosion, diagnostic cylinders are designed and used to measure plasma properties at the dormant-cathode locations. Each diagnostic cylinder appears similar to the active discharge cathode assembly, but is outfitted with Langmuir probes. Plasma properties are then used in a simple sputtering-erosion model to predict erosion of the dormant cathodes. Results indicate that the device should be operated at the 0 A electromagnet current configuration for minimum dormant-cathode erosion. For this optimum configuration, typical number density, electron temperature, and plasma potential values are 5.0 × 1011 cm-3, 5 eV, and 27 V with respect to cathode common, respectively. The erosion model indicates that the dormant cathodes will suffer preoperation erosion, but the erosion rate is 26 times slower than the active discharge cathode assembly. Compared with a single-discharge-cathode-assembly thruster, the model predicts an increase in lifetime by a factor of 2.9 for a triple-discharge-cathode-assembly device.

Duke Scholars

Published In

Journal of Propulsion and Power

DOI

EISSN

1533-3876

ISSN

0748-4658

Publication Date

January 1, 2008

Volume

24

Issue

6

Start / End Page

1361 / 1368

Related Subject Headings

  • Aerospace & Aeronautics
  • 4001 Aerospace engineering
  • 0913 Mechanical Engineering
  • 0901 Aerospace Engineering
  • 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Rovey, J. L., & Gallimore, A. D. (2008). Dormant cathode erosion in a multiple-cathode gridded ion thruster. Journal of Propulsion and Power, 24(6), 1361–1368. https://doi.org/10.2514/1.37031
Rovey, J. L., and A. D. Gallimore. “Dormant cathode erosion in a multiple-cathode gridded ion thruster.” Journal of Propulsion and Power 24, no. 6 (January 1, 2008): 1361–68. https://doi.org/10.2514/1.37031.
Rovey JL, Gallimore AD. Dormant cathode erosion in a multiple-cathode gridded ion thruster. Journal of Propulsion and Power. 2008 Jan 1;24(6):1361–8.
Rovey, J. L., and A. D. Gallimore. “Dormant cathode erosion in a multiple-cathode gridded ion thruster.” Journal of Propulsion and Power, vol. 24, no. 6, Jan. 2008, pp. 1361–68. Scopus, doi:10.2514/1.37031.
Rovey JL, Gallimore AD. Dormant cathode erosion in a multiple-cathode gridded ion thruster. Journal of Propulsion and Power. 2008 Jan 1;24(6):1361–1368.

Published In

Journal of Propulsion and Power

DOI

EISSN

1533-3876

ISSN

0748-4658

Publication Date

January 1, 2008

Volume

24

Issue

6

Start / End Page

1361 / 1368

Related Subject Headings

  • Aerospace & Aeronautics
  • 4001 Aerospace engineering
  • 0913 Mechanical Engineering
  • 0901 Aerospace Engineering
  • 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics