Skip to main content
Journal cover image

Influence of Hydrophobicity on Polyelectrolyte Complexation

Publication ,  Journal Article
Sadman, K; Wang, Q; Chen, Y; Keshavarz, B; Jiang, Z; Shull, KR
Published in: Macromolecules
December 12, 2017

Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low-viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials, their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture, it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP) with methyl, ethyl, and propyl substituents - thereby increasing the hydrophobicity with increasing side chain length - and complexing them with a common anionic polyelectrolyte, poly(styrenesulfonate). The mechanical behavior of these complexes is compared to the more hydrophilic system of poly(styrenesulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling-modulus master curves that are quantified in this work. The rheological behaviors of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed "saloplastically".

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Macromolecules

DOI

EISSN

1520-5835

ISSN

0024-9297

Publication Date

December 12, 2017

Volume

50

Issue

23

Start / End Page

9417 / 9426

Related Subject Headings

  • Polymers
  • 40 Engineering
  • 34 Chemical sciences
  • 09 Engineering
  • 03 Chemical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Sadman, K., Wang, Q., Chen, Y., Keshavarz, B., Jiang, Z., & Shull, K. R. (2017). Influence of Hydrophobicity on Polyelectrolyte Complexation. Macromolecules, 50(23), 9417–9426. https://doi.org/10.1021/acs.macromol.7b02031
Sadman, K., Q. Wang, Y. Chen, B. Keshavarz, Z. Jiang, and K. R. Shull. “Influence of Hydrophobicity on Polyelectrolyte Complexation.” Macromolecules 50, no. 23 (December 12, 2017): 9417–26. https://doi.org/10.1021/acs.macromol.7b02031.
Sadman K, Wang Q, Chen Y, Keshavarz B, Jiang Z, Shull KR. Influence of Hydrophobicity on Polyelectrolyte Complexation. Macromolecules. 2017 Dec 12;50(23):9417–26.
Sadman, K., et al. “Influence of Hydrophobicity on Polyelectrolyte Complexation.” Macromolecules, vol. 50, no. 23, Dec. 2017, pp. 9417–26. Scopus, doi:10.1021/acs.macromol.7b02031.
Sadman K, Wang Q, Chen Y, Keshavarz B, Jiang Z, Shull KR. Influence of Hydrophobicity on Polyelectrolyte Complexation. Macromolecules. 2017 Dec 12;50(23):9417–9426.
Journal cover image

Published In

Macromolecules

DOI

EISSN

1520-5835

ISSN

0024-9297

Publication Date

December 12, 2017

Volume

50

Issue

23

Start / End Page

9417 / 9426

Related Subject Headings

  • Polymers
  • 40 Engineering
  • 34 Chemical sciences
  • 09 Engineering
  • 03 Chemical Sciences