Instantons on multi-Taub-NUT Spaces III: Down Transform, Completeness, and Isometry
Publication
, Journal Article
Cherkis, SA; Larraín-Hubach, A; Stern, M
Published in: Journal of differential geometry
January 2026
The index bundle of a family of Dirac operators associated to an instanton on a multi-Taub-NUT space forms a bow representation. We prove that the gauge equivalence classes of solutions of this bow representation are in one-to-one correspondence with the instantons. We also prove that this correspondence establishes an isometry of the bow and instanton moduli spaces.
Duke Scholars
Published In
Journal of differential geometry
DOI
EISSN
1945-743X
ISSN
0022-040X
Publication Date
January 2026
Volume
132
Issue
1
Start / End Page
1 / 55
Publisher
International Press
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Cherkis, S. A., Larraín-Hubach, A., & Stern, M. (2026). Instantons on multi-Taub-NUT Spaces III: Down Transform, Completeness,
and Isometry. Journal of Differential Geometry, 132(1), 1–55. https://doi.org/10.4310/jdg/1766431813
Cherkis, Sergey A., Andrés Larraín-Hubach, and Mark Stern. “Instantons on multi-Taub-NUT Spaces III: Down Transform, Completeness,
and Isometry.” Journal of Differential Geometry 132, no. 1 (January 2026): 1–55. https://doi.org/10.4310/jdg/1766431813.
Cherkis SA, Larraín-Hubach A, Stern M. Instantons on multi-Taub-NUT Spaces III: Down Transform, Completeness,
and Isometry. Journal of differential geometry. 2026 Jan;132(1):1–55.
Cherkis, Sergey A., et al. “Instantons on multi-Taub-NUT Spaces III: Down Transform, Completeness,
and Isometry.” Journal of Differential Geometry, vol. 132, no. 1, International Press, Jan. 2026, pp. 1–55. Manual, doi:10.4310/jdg/1766431813.
Cherkis SA, Larraín-Hubach A, Stern M. Instantons on multi-Taub-NUT Spaces III: Down Transform, Completeness,
and Isometry. Journal of differential geometry. International Press; 2026 Jan;132(1):1–55.
Published In
Journal of differential geometry
DOI
EISSN
1945-743X
ISSN
0022-040X
Publication Date
January 2026
Volume
132
Issue
1
Start / End Page
1 / 55
Publisher
International Press
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics