Skip to main content

Instantons on multi-Taub-NUT Spaces III: Down Transform, Completeness, and Isometry

Publication ,  Journal Article
Cherkis, SA; Larraín-Hubach, A; Stern, M
Published in: Journal of differential geometry
January 2026

The index bundle of a family of Dirac operators associated to an instanton on a multi-Taub-NUT space forms a bow representation. We prove that the gauge equivalence classes of solutions of this bow representation are in one-to-one correspondence with the instantons. We also prove that this correspondence establishes an isometry of the bow and instanton moduli spaces.

Duke Scholars

Published In

Journal of differential geometry

DOI

EISSN

1945-743X

ISSN

0022-040X

Publication Date

January 2026

Volume

132

Issue

1

Start / End Page

1 / 55

Publisher

International Press

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Cherkis, S. A., Larraín-Hubach, A., & Stern, M. (2026). Instantons on multi-Taub-NUT Spaces III: Down Transform, Completeness, and Isometry. Journal of Differential Geometry, 132(1), 1–55. https://doi.org/10.4310/jdg/1766431813
Cherkis, Sergey A., Andrés Larraín-Hubach, and Mark Stern. “Instantons on multi-Taub-NUT Spaces III: Down Transform, Completeness, and Isometry.” Journal of Differential Geometry 132, no. 1 (January 2026): 1–55. https://doi.org/10.4310/jdg/1766431813.
Cherkis SA, Larraín-Hubach A, Stern M. Instantons on multi-Taub-NUT Spaces III: Down Transform, Completeness, and Isometry. Journal of differential geometry. 2026 Jan;132(1):1–55.
Cherkis, Sergey A., et al. “Instantons on multi-Taub-NUT Spaces III: Down Transform, Completeness, and Isometry.” Journal of Differential Geometry, vol. 132, no. 1, International Press, Jan. 2026, pp. 1–55. Manual, doi:10.4310/jdg/1766431813.
Cherkis SA, Larraín-Hubach A, Stern M. Instantons on multi-Taub-NUT Spaces III: Down Transform, Completeness, and Isometry. Journal of differential geometry. International Press; 2026 Jan;132(1):1–55.

Published In

Journal of differential geometry

DOI

EISSN

1945-743X

ISSN

0022-040X

Publication Date

January 2026

Volume

132

Issue

1

Start / End Page

1 / 55

Publisher

International Press

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics