Learning Many-Body Hamiltonians with Heisenberg-Limited Scaling.
Learning a many-body Hamiltonian from its dynamics is a fundamental problem in physics. In this Letter, we propose the first algorithm to achieve the Heisenberg limit for learning an interacting N-qubit local Hamiltonian. After a total evolution time of O(ε^{-1}), the proposed algorithm can efficiently estimate any parameter in the N-qubit Hamiltonian to ε error with high probability. Our algorithm uses ideas from quantum simulation to decouple the unknown N-qubit Hamiltonian H into noninteracting patches and learns H using a quantum-enhanced divide-and-conquer approach. The proposed algorithm is robust against state preparation and measurement error, does not require eigenstates or thermal states, and only uses polylog(ε^{-1}) experiments. In contrast, the best existing algorithms require O(ε^{-2}) experiments and total evolution time. We prove a matching lower bound to establish the asymptotic optimality of our algorithm.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences