Skip to main content

THRESHOLD RAMSEY MULTIPLICITY FOR ODD CYCLES

Publication ,  Journal Article
Conlon, D; Fox, J; Sudakov, B; Wei, F
Published in: Revista de la Union Matematica Argentina
January 1, 2022

The Ramsey number r(H) of a graph H is the minimum n such that any two-coloring of the edges of the complete graph Kn contains a monochromatic copy of H. The threshold Ramsey multiplicity m(H) is then the minimum number of monochromatic copies of H taken over all two-edgecolorings of Kr(H). The study of this concept was first proposed by Harary and Prins almost fifty years ago. In a companion paper, the authors have shown that there is a positive constant c such that the threshold Ramsey multiplicity for a path or even cycle with k vertices is at least (ck)k, which is tight up to the value of c. Here, using different methods, we show that the same result also holds for odd cycles with k vertices.

Duke Scholars

Published In

Revista de la Union Matematica Argentina

DOI

EISSN

1669-9637

ISSN

0041-6932

Publication Date

January 1, 2022

Volume

64

Issue

1

Start / End Page

49 / 68

Related Subject Headings

  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Conlon, D., Fox, J., Sudakov, B., & Wei, F. (2022). THRESHOLD RAMSEY MULTIPLICITY FOR ODD CYCLES. Revista de La Union Matematica Argentina, 64(1), 49–68. https://doi.org/10.33044/revuma.2874
Conlon, D., J. Fox, B. Sudakov, and F. Wei. “THRESHOLD RAMSEY MULTIPLICITY FOR ODD CYCLES.” Revista de La Union Matematica Argentina 64, no. 1 (January 1, 2022): 49–68. https://doi.org/10.33044/revuma.2874.
Conlon D, Fox J, Sudakov B, Wei F. THRESHOLD RAMSEY MULTIPLICITY FOR ODD CYCLES. Revista de la Union Matematica Argentina. 2022 Jan 1;64(1):49–68.
Conlon, D., et al. “THRESHOLD RAMSEY MULTIPLICITY FOR ODD CYCLES.” Revista de La Union Matematica Argentina, vol. 64, no. 1, Jan. 2022, pp. 49–68. Scopus, doi:10.33044/revuma.2874.
Conlon D, Fox J, Sudakov B, Wei F. THRESHOLD RAMSEY MULTIPLICITY FOR ODD CYCLES. Revista de la Union Matematica Argentina. 2022 Jan 1;64(1):49–68.

Published In

Revista de la Union Matematica Argentina

DOI

EISSN

1669-9637

ISSN

0041-6932

Publication Date

January 1, 2022

Volume

64

Issue

1

Start / End Page

49 / 68

Related Subject Headings

  • 4904 Pure mathematics
  • 0101 Pure Mathematics