Skip to main content

Learning Resilient Radio Resource Management Policies With Graph Neural Networks

Publication ,  Journal Article
Naderializadeh, N; Eisen, M; Ribeiro, A
Published in: IEEE Transactions on Signal Processing
January 1, 2023

We consider the problems of user selection and power control in wireless interference networks, comprising multiple access points (APs) communicating with a group of user equipment devices (UEs) over a shared wireless medium. To achieve a high aggregate rate, while ensuring fairness across all users, we formulate a resilient radio resource management (RRM) policy optimization problem with per-user minimum-capacity constraints that adapt to the underlying network conditions via learnable slack variables. We reformulate the problem in the Lagrangian dual domain, and show that we can parameterize the RRM policies using a finite set of parameters, which can be trained alongside the slack and dual variables via an unsupervised primal-dual approach thanks to a provably small duality gap. We use a scalable and permutation-equivariant graph neural network (GNN) architecture to parameterize the RRM policies based on a graph topology derived from the instantaneous channel conditions. Through experimental results, we verify that the minimum-capacity constraints adapt to the underlying network configurations and channel conditions. We further demonstrate that, thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the 5th percentile rate - a metric that quantifies the level of fairness in the resource allocation decisions - as compared to baseline algorithms.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

IEEE Transactions on Signal Processing

DOI

EISSN

1941-0476

ISSN

1053-587X

Publication Date

January 1, 2023

Volume

71

Start / End Page

995 / 1009

Related Subject Headings

  • Networking & Telecommunications
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Naderializadeh, N., Eisen, M., & Ribeiro, A. (2023). Learning Resilient Radio Resource Management Policies With Graph Neural Networks. IEEE Transactions on Signal Processing, 71, 995–1009. https://doi.org/10.1109/TSP.2023.3255547
Naderializadeh, N., M. Eisen, and A. Ribeiro. “Learning Resilient Radio Resource Management Policies With Graph Neural Networks.” IEEE Transactions on Signal Processing 71 (January 1, 2023): 995–1009. https://doi.org/10.1109/TSP.2023.3255547.
Naderializadeh N, Eisen M, Ribeiro A. Learning Resilient Radio Resource Management Policies With Graph Neural Networks. IEEE Transactions on Signal Processing. 2023 Jan 1;71:995–1009.
Naderializadeh, N., et al. “Learning Resilient Radio Resource Management Policies With Graph Neural Networks.” IEEE Transactions on Signal Processing, vol. 71, Jan. 2023, pp. 995–1009. Scopus, doi:10.1109/TSP.2023.3255547.
Naderializadeh N, Eisen M, Ribeiro A. Learning Resilient Radio Resource Management Policies With Graph Neural Networks. IEEE Transactions on Signal Processing. 2023 Jan 1;71:995–1009.

Published In

IEEE Transactions on Signal Processing

DOI

EISSN

1941-0476

ISSN

1053-587X

Publication Date

January 1, 2023

Volume

71

Start / End Page

995 / 1009

Related Subject Headings

  • Networking & Telecommunications