Weighted estimates for the Bergman projection on the Hartogs triangle
Publication
, Journal Article
Huo, Z; Wick, BD
Published in: Journal of Functional Analysis
November 15, 2020
We apply modern techniques of dyadic harmonic analysis to obtain sharp estimates for the Bergman projection in weighted Bergman spaces. Our main theorem focuses on the Bergman projection on the Hartogs triangle. The estimates of the operator norm are in terms of a Bekollé-Bonami type constant. As an application of the results obtained, we give, for example, an upper bound for the Lp norm of the Bergman projection on the generalized Hartogs triangle Hm/n in C2.
Duke Scholars
Published In
Journal of Functional Analysis
DOI
EISSN
1096-0783
ISSN
0022-1236
Publication Date
November 15, 2020
Volume
279
Issue
9
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Huo, Z., & Wick, B. D. (2020). Weighted estimates for the Bergman projection on the Hartogs triangle. Journal of Functional Analysis, 279(9). https://doi.org/10.1016/j.jfa.2020.108727
Huo, Z., and B. D. Wick. “Weighted estimates for the Bergman projection on the Hartogs triangle.” Journal of Functional Analysis 279, no. 9 (November 15, 2020). https://doi.org/10.1016/j.jfa.2020.108727.
Huo Z, Wick BD. Weighted estimates for the Bergman projection on the Hartogs triangle. Journal of Functional Analysis. 2020 Nov 15;279(9).
Huo, Z., and B. D. Wick. “Weighted estimates for the Bergman projection on the Hartogs triangle.” Journal of Functional Analysis, vol. 279, no. 9, Nov. 2020. Scopus, doi:10.1016/j.jfa.2020.108727.
Huo Z, Wick BD. Weighted estimates for the Bergman projection on the Hartogs triangle. Journal of Functional Analysis. 2020 Nov 15;279(9).
Published In
Journal of Functional Analysis
DOI
EISSN
1096-0783
ISSN
0022-1236
Publication Date
November 15, 2020
Volume
279
Issue
9
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics