Skip to main content
Journal cover image

Weighted estimates for the Bergman projection on the Hartogs triangle

Publication ,  Journal Article
Huo, Z; Wick, BD
Published in: Journal of Functional Analysis
November 15, 2020

We apply modern techniques of dyadic harmonic analysis to obtain sharp estimates for the Bergman projection in weighted Bergman spaces. Our main theorem focuses on the Bergman projection on the Hartogs triangle. The estimates of the operator norm are in terms of a Bekollé-Bonami type constant. As an application of the results obtained, we give, for example, an upper bound for the Lp norm of the Bergman projection on the generalized Hartogs triangle Hm/n in C2.

Duke Scholars

Published In

Journal of Functional Analysis

DOI

EISSN

1096-0783

ISSN

0022-1236

Publication Date

November 15, 2020

Volume

279

Issue

9

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Huo, Z., & Wick, B. D. (2020). Weighted estimates for the Bergman projection on the Hartogs triangle. Journal of Functional Analysis, 279(9). https://doi.org/10.1016/j.jfa.2020.108727
Huo, Z., and B. D. Wick. “Weighted estimates for the Bergman projection on the Hartogs triangle.” Journal of Functional Analysis 279, no. 9 (November 15, 2020). https://doi.org/10.1016/j.jfa.2020.108727.
Huo Z, Wick BD. Weighted estimates for the Bergman projection on the Hartogs triangle. Journal of Functional Analysis. 2020 Nov 15;279(9).
Huo, Z., and B. D. Wick. “Weighted estimates for the Bergman projection on the Hartogs triangle.” Journal of Functional Analysis, vol. 279, no. 9, Nov. 2020. Scopus, doi:10.1016/j.jfa.2020.108727.
Huo Z, Wick BD. Weighted estimates for the Bergman projection on the Hartogs triangle. Journal of Functional Analysis. 2020 Nov 15;279(9).
Journal cover image

Published In

Journal of Functional Analysis

DOI

EISSN

1096-0783

ISSN

0022-1236

Publication Date

November 15, 2020

Volume

279

Issue

9

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics