Skip to main content
Journal cover image

A Békollè–Bonami Class of Weights for Certain Pseudoconvex Domains

Publication ,  Journal Article
Huo, Z; Wagner, NA; Wick, BD
Published in: Journal of Geometric Analysis
June 1, 2021

We prove the weighted Lp regularity of the ordinary Bergman projection on certain pseudoconvex domains where the weight belongs to an appropriate generalization of the Békollè–Bonami class. The main tools used are estimates on the Bergman kernel obtained by McNeal and Békollè’s original approach of proving a good-lambda inequality.

Duke Scholars

Published In

Journal of Geometric Analysis

DOI

ISSN

1050-6926

Publication Date

June 1, 2021

Volume

31

Issue

6

Start / End Page

6042 / 6066

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Huo, Z., Wagner, N. A., & Wick, B. D. (2021). A Békollè–Bonami Class of Weights for Certain Pseudoconvex Domains. Journal of Geometric Analysis, 31(6), 6042–6066. https://doi.org/10.1007/s12220-020-00516-w
Huo, Z., N. A. Wagner, and B. D. Wick. “A Békollè–Bonami Class of Weights for Certain Pseudoconvex Domains.” Journal of Geometric Analysis 31, no. 6 (June 1, 2021): 6042–66. https://doi.org/10.1007/s12220-020-00516-w.
Huo Z, Wagner NA, Wick BD. A Békollè–Bonami Class of Weights for Certain Pseudoconvex Domains. Journal of Geometric Analysis. 2021 Jun 1;31(6):6042–66.
Huo, Z., et al. “A Békollè–Bonami Class of Weights for Certain Pseudoconvex Domains.” Journal of Geometric Analysis, vol. 31, no. 6, June 2021, pp. 6042–66. Scopus, doi:10.1007/s12220-020-00516-w.
Huo Z, Wagner NA, Wick BD. A Békollè–Bonami Class of Weights for Certain Pseudoconvex Domains. Journal of Geometric Analysis. 2021 Jun 1;31(6):6042–6066.
Journal cover image

Published In

Journal of Geometric Analysis

DOI

ISSN

1050-6926

Publication Date

June 1, 2021

Volume

31

Issue

6

Start / End Page

6042 / 6066

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 0101 Pure Mathematics