Skip to main content

Lp estimates for the bergman projection on some reinhardt domains

Publication ,  Journal Article
Huo, Z
Published in: Proceedings of the American Mathematical Society
January 1, 2018

We obtain Lp regularity for the Bergman projection on some Reinhardt domains. We start with a bounded initial domain Ω with some symmetry properties and generate successor domains in higher dimensions. We prove: If the Bergman kernel on Ω satisfies appropriate estimates, then the Bergman projection on the successor is Lp bounded. For example, the Bergman projection on successors of strictly pseudoconvex initial domains is bounded on Lp for 1 < p < ∞. The successor domains need not have smooth boundary nor be strictly pseudoconvex.

Duke Scholars

Published In

Proceedings of the American Mathematical Society

DOI

EISSN

1088-6826

ISSN

0002-9939

Publication Date

January 1, 2018

Volume

146

Issue

6

Start / End Page

2541 / 2553

Related Subject Headings

  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Huo, Z. (2018). Lp estimates for the bergman projection on some reinhardt domains. Proceedings of the American Mathematical Society, 146(6), 2541–2553. https://doi.org/10.1090/proc/13932
Huo, Z. “Lp estimates for the bergman projection on some reinhardt domains.” Proceedings of the American Mathematical Society 146, no. 6 (January 1, 2018): 2541–53. https://doi.org/10.1090/proc/13932.
Huo Z. Lp estimates for the bergman projection on some reinhardt domains. Proceedings of the American Mathematical Society. 2018 Jan 1;146(6):2541–53.
Huo, Z. “Lp estimates for the bergman projection on some reinhardt domains.” Proceedings of the American Mathematical Society, vol. 146, no. 6, Jan. 2018, pp. 2541–53. Scopus, doi:10.1090/proc/13932.
Huo Z. Lp estimates for the bergman projection on some reinhardt domains. Proceedings of the American Mathematical Society. 2018 Jan 1;146(6):2541–2553.

Published In

Proceedings of the American Mathematical Society

DOI

EISSN

1088-6826

ISSN

0002-9939

Publication Date

January 1, 2018

Volume

146

Issue

6

Start / End Page

2541 / 2553

Related Subject Headings

  • 4904 Pure mathematics
  • 0101 Pure Mathematics