Lp estimates for the bergman projection on some reinhardt domains
Publication
, Journal Article
Huo, Z
Published in: Proceedings of the American Mathematical Society
January 1, 2018
We obtain Lp regularity for the Bergman projection on some Reinhardt domains. We start with a bounded initial domain Ω with some symmetry properties and generate successor domains in higher dimensions. We prove: If the Bergman kernel on Ω satisfies appropriate estimates, then the Bergman projection on the successor is Lp bounded. For example, the Bergman projection on successors of strictly pseudoconvex initial domains is bounded on Lp for 1 < p < ∞. The successor domains need not have smooth boundary nor be strictly pseudoconvex.
Duke Scholars
Published In
Proceedings of the American Mathematical Society
DOI
EISSN
1088-6826
ISSN
0002-9939
Publication Date
January 1, 2018
Volume
146
Issue
6
Start / End Page
2541 / 2553
Related Subject Headings
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Huo, Z. (2018). Lp estimates for the bergman projection on some reinhardt domains. Proceedings of the American Mathematical Society, 146(6), 2541–2553. https://doi.org/10.1090/proc/13932
Huo, Z. “Lp estimates for the bergman projection on some reinhardt domains.” Proceedings of the American Mathematical Society 146, no. 6 (January 1, 2018): 2541–53. https://doi.org/10.1090/proc/13932.
Huo Z. Lp estimates for the bergman projection on some reinhardt domains. Proceedings of the American Mathematical Society. 2018 Jan 1;146(6):2541–53.
Huo, Z. “Lp estimates for the bergman projection on some reinhardt domains.” Proceedings of the American Mathematical Society, vol. 146, no. 6, Jan. 2018, pp. 2541–53. Scopus, doi:10.1090/proc/13932.
Huo Z. Lp estimates for the bergman projection on some reinhardt domains. Proceedings of the American Mathematical Society. 2018 Jan 1;146(6):2541–2553.
Published In
Proceedings of the American Mathematical Society
DOI
EISSN
1088-6826
ISSN
0002-9939
Publication Date
January 1, 2018
Volume
146
Issue
6
Start / End Page
2541 / 2553
Related Subject Headings
- 4904 Pure mathematics
- 0101 Pure Mathematics