Bekollé-Bonami estimates on some pseudoconvex domains
Publication
, Journal Article
Huo, Z; Wagner, NA; Wick, BD
Published in: Bulletin des Sciences Mathematiques
September 1, 2021
We establish a weighted Lp norm estimate for the Bergman projection for a class of pseudoconvex domains. We obtain an upper bound for the weighted Lp norm when the domain is, for example, a bounded smooth strictly pseudoconvex domain, a pseudoconvex domain of finite type in C2, a convex domain of finite type in Cn, or a decoupled domain of finite type in Cn. The upper bound is related to the Bekollé-Bonami constant and is sharp. When the domain is smooth, bounded, and strictly pseudoconvex, we also obtain a lower bound for the weighted norm. As an additional application of the method of proof, we obtain the result that the Bergman projection is weak-type (1,1) on these domains.
Duke Scholars
Published In
Bulletin des Sciences Mathematiques
DOI
ISSN
0007-4497
Publication Date
September 1, 2021
Volume
170
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Huo, Z., Wagner, N. A., & Wick, B. D. (2021). Bekollé-Bonami estimates on some pseudoconvex domains. Bulletin Des Sciences Mathematiques, 170. https://doi.org/10.1016/j.bulsci.2021.102993
Huo, Z., N. A. Wagner, and B. D. Wick. “Bekollé-Bonami estimates on some pseudoconvex domains.” Bulletin Des Sciences Mathematiques 170 (September 1, 2021). https://doi.org/10.1016/j.bulsci.2021.102993.
Huo Z, Wagner NA, Wick BD. Bekollé-Bonami estimates on some pseudoconvex domains. Bulletin des Sciences Mathematiques. 2021 Sep 1;170.
Huo, Z., et al. “Bekollé-Bonami estimates on some pseudoconvex domains.” Bulletin Des Sciences Mathematiques, vol. 170, Sept. 2021. Scopus, doi:10.1016/j.bulsci.2021.102993.
Huo Z, Wagner NA, Wick BD. Bekollé-Bonami estimates on some pseudoconvex domains. Bulletin des Sciences Mathematiques. 2021 Sep 1;170.
Published In
Bulletin des Sciences Mathematiques
DOI
ISSN
0007-4497
Publication Date
September 1, 2021
Volume
170
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics