Skip to main content

Hyperbolic Ordinal Embedding

Publication ,  Conference
Suzuki, A; Wang, J; Tian, F; Nitanda, A; Yamanishi, K
Published in: Proceedings of Machine Learning Research
January 1, 2019

Given ordinal relations such as the object i is more similar to j than k is to l, ordinal embedding is to embed these objects into a low-dimensional space with all ordinal constraints preserved. Although existing approaches have preserved ordinal relations in Euclidean space, whether Euclidean space is compatible with true data structure is largely ignored, although it is essential to effective embedding. Since real data often exhibit hierarchical structure, it is hard for Euclidean space approaches to achieve effective embeddings in low dimensionality, which incurs high computational complexity or overfitting. In this paper we propose a novel hyperbolic ordinal embedding (HOE) method to embed objects in hyperbolic space. Due to the hierarchy-friendly property of hyperbolic space, HOE can effectively capture the hierarchy to achieve embeddings in an extremely low-dimensional space. We have not only theoretically proved the superiority of hyperbolic space and the limitations of Euclidean space for embedding hierarchical data, but also experimentally demonstrated that HOE significantly outperforms Euclidean-based methods.

Duke Scholars

Published In

Proceedings of Machine Learning Research

EISSN

2640-3498

Publication Date

January 1, 2019

Volume

101

Start / End Page

1065 / 1080
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Suzuki, A., Wang, J., Tian, F., Nitanda, A., & Yamanishi, K. (2019). Hyperbolic Ordinal Embedding. In Proceedings of Machine Learning Research (Vol. 101, pp. 1065–1080).
Suzuki, A., J. Wang, F. Tian, A. Nitanda, and K. Yamanishi. “Hyperbolic Ordinal Embedding.” In Proceedings of Machine Learning Research, 101:1065–80, 2019.
Suzuki A, Wang J, Tian F, Nitanda A, Yamanishi K. Hyperbolic Ordinal Embedding. In: Proceedings of Machine Learning Research. 2019. p. 1065–80.
Suzuki, A., et al. “Hyperbolic Ordinal Embedding.” Proceedings of Machine Learning Research, vol. 101, 2019, pp. 1065–80.
Suzuki A, Wang J, Tian F, Nitanda A, Yamanishi K. Hyperbolic Ordinal Embedding. Proceedings of Machine Learning Research. 2019. p. 1065–1080.

Published In

Proceedings of Machine Learning Research

EISSN

2640-3498

Publication Date

January 1, 2019

Volume

101

Start / End Page

1065 / 1080