Skip to main content

Variable Importance Matching for Causal Inference

Publication ,  Conference
Lanners, Q; Parikh, H; Volfovsky, A; Rudin, C; Page, D
Published in: Proceedings of Machine Learning Research
January 1, 2023

Our goal is to produce methods for observational causal inference that are auditable, easy to troubleshoot, accurate for treatment effect estimation, and scalable to high-dimensional data. We describe a general framework called Model-to-Match that achieves these goals by (i) learning a distance metric via outcome modeling, (ii) creating matched groups using the distance metric, and (iii) using the matched groups to estimate treatment effects. Model-to-Match uses variable importance measurements to construct a distance metric, making it a flexible framework that can be adapted to various applications. Concentrating on the scalability of the problem in the number of potential confounders, we operationalize the Model-to-Match framework with LASSO. We derive performance guarantees for settings where LASSO outcome modeling consistently identifies all confounders (importantly without requiring the linear model to be correctly specified). We also provide experimental results demonstrating the method's auditability, accuracy, and scalability as well as extensions to more general nonparametric outcome modeling.

Duke Scholars

Published In

Proceedings of Machine Learning Research

EISSN

2640-3498

Publication Date

January 1, 2023

Volume

216

Start / End Page

1174 / 1184
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lanners, Q., Parikh, H., Volfovsky, A., Rudin, C., & Page, D. (2023). Variable Importance Matching for Causal Inference. In Proceedings of Machine Learning Research (Vol. 216, pp. 1174–1184).
Lanners, Q., H. Parikh, A. Volfovsky, C. Rudin, and D. Page. “Variable Importance Matching for Causal Inference.” In Proceedings of Machine Learning Research, 216:1174–84, 2023.
Lanners Q, Parikh H, Volfovsky A, Rudin C, Page D. Variable Importance Matching for Causal Inference. In: Proceedings of Machine Learning Research. 2023. p. 1174–84.
Lanners, Q., et al. “Variable Importance Matching for Causal Inference.” Proceedings of Machine Learning Research, vol. 216, 2023, pp. 1174–84.
Lanners Q, Parikh H, Volfovsky A, Rudin C, Page D. Variable Importance Matching for Causal Inference. Proceedings of Machine Learning Research. 2023. p. 1174–1184.

Published In

Proceedings of Machine Learning Research

EISSN

2640-3498

Publication Date

January 1, 2023

Volume

216

Start / End Page

1174 / 1184