Skip to main content

Intelligent contour extraction approach for accurate segmentation of medical ultrasound images

Publication ,  Journal Article
Peng, T; Wu, Y; Gu, Y; Xu, D; Wang, C; Li, Q; Cai, J
Published in: Frontiers in Physiology
January 1, 2023

Introduction: Accurate contour extraction in ultrasound images is of great interest for image-guided organ interventions and disease diagnosis. Nevertheless, it remains a problematic issue owing to the missing or ambiguous outline between organs (i.e., prostate and kidney) and surrounding tissues, the appearance of shadow artifacts, and the large variability in the shape of organs. Methods: To address these issues, we devised a method that includes four stages. In the first stage, the data sequence is acquired using an improved adaptive selection principal curve method, in which a limited number of radiologist defined data points are adopted as the prior. The second stage then uses an enhanced quantum evolution network to help acquire the optimal neural network. The third stage involves increasing the precision of the experimental outcomes after training the neural network, while using the data sequence as the input. In the final stage, the contour is smoothed using an explicable mathematical formula explained by the model parameters of the neural network. Results: Our experiments showed that our approach outperformed other current methods, including hybrid and Transformer-based deep-learning methods, achieving an average Dice similarity coefficient, Jaccard similarity coefficient, and accuracy of 95.7 ± 2.4%, 94.6 ± 2.6%, and 95.3 ± 2.6%, respectively. Discussion: This work develops an intelligent contour extraction approach on ultrasound images. Our approach obtained more satisfactory outcome compared with recent state-of-the-art approaches. The knowledge of precise boundaries of the organ is significant for the conservation of risk structures. Our developed approach has the potential to enhance disease diagnosis and therapeutic outcomes.

Duke Scholars

Published In

Frontiers in Physiology

DOI

EISSN

1664-042X

Publication Date

January 1, 2023

Volume

14

Related Subject Headings

  • 3208 Medical physiology
  • 3101 Biochemistry and cell biology
  • 1701 Psychology
  • 1116 Medical Physiology
  • 0606 Physiology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Peng, T., Wu, Y., Gu, Y., Xu, D., Wang, C., Li, Q., & Cai, J. (2023). Intelligent contour extraction approach for accurate segmentation of medical ultrasound images. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1177351
Peng, T., Y. Wu, Y. Gu, D. Xu, C. Wang, Q. Li, and J. Cai. “Intelligent contour extraction approach for accurate segmentation of medical ultrasound images.” Frontiers in Physiology 14 (January 1, 2023). https://doi.org/10.3389/fphys.2023.1177351.
Peng T, Wu Y, Gu Y, Xu D, Wang C, Li Q, et al. Intelligent contour extraction approach for accurate segmentation of medical ultrasound images. Frontiers in Physiology. 2023 Jan 1;14.
Peng, T., et al. “Intelligent contour extraction approach for accurate segmentation of medical ultrasound images.” Frontiers in Physiology, vol. 14, Jan. 2023. Scopus, doi:10.3389/fphys.2023.1177351.
Peng T, Wu Y, Gu Y, Xu D, Wang C, Li Q, Cai J. Intelligent contour extraction approach for accurate segmentation of medical ultrasound images. Frontiers in Physiology. 2023 Jan 1;14.

Published In

Frontiers in Physiology

DOI

EISSN

1664-042X

Publication Date

January 1, 2023

Volume

14

Related Subject Headings

  • 3208 Medical physiology
  • 3101 Biochemistry and cell biology
  • 1701 Psychology
  • 1116 Medical Physiology
  • 0606 Physiology