Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons
In heterogeneous rank aggregation problems, users often exhibit various accuracy levels when comparing pairs of items. Thus, a uniform querying strategy over users may not be optimal. To address this issue, we propose an elimination-based active sampling strategy, which estimates the ranking of items via noisy pairwise comparisons from multiple users and improves the users' average accuracy by maintaining an active set of users. We prove that our algorithm can return the true ranking of items with high probability. We also provide a sample complexity bound for the proposed algorithm, which outperforms the non-active strategies in the literature and close to oracle under mild conditions. Experiments are provided to show the empirical advantage of the proposed methods over the state-of-the-art baselines.