Skip to main content

Spatial and temporal cellular responses to single-strand breaks in human cells.

Publication ,  Journal Article
Okano, S; Lan, L; Caldecott, KW; Mori, T; Yasui, A
Published in: Mol Cell Biol
June 2003

DNA single-strand breaks (SSB) are one of the most frequent DNA lesions produced by reactive oxygen species and during DNA metabolism, but the analysis of cellular responses to SSB remains difficult due to the lack of an experimental method to produce SSB alone in cells. By using human cells expressing a foreign UV damage endonuclease (UVDE) and irradiating the cells with UV through tiny pores in membrane filters, we created SSB in restricted areas in the nucleus by the immediate action of UVDE on UV-induced DNA lesions. Cellular responses to the SSB were characterized by using antibodies and fluorescence microscopy. Upon UV irradiation, poly(ADP-ribose) synthesis occurred immediately in the irradiated area. Simultaneously, but dependent on poly(ADP-ribosyl)ation, XRCC1 was translocated from throughout the nucleus, including nucleoli, to the SSB. The BRCT1 domain of XRCC1 protein was indispensable for its poly(ADP-ribose)-dependent recruitment to the SSB. Proliferating cell nuclear antigen and the p150 subunit of chromatin assembly factor 1 also accumulated at the SSB in a detergent-resistant form, which was significantly reduced by inhibition of poly(ADP-ribose) synthesis. Our results show the importance of poly(ADP-ribosyl)ation in sequential cellular responses to SSB.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Mol Cell Biol

DOI

ISSN

0270-7306

Publication Date

June 2003

Volume

23

Issue

11

Start / End Page

3974 / 3981

Location

United States

Related Subject Headings

  • X-ray Repair Cross Complementing Protein 1
  • Ultraviolet Rays
  • Transcription Factors
  • Proteins
  • Protein Structure, Tertiary
  • Proliferating Cell Nuclear Antigen
  • Poly Adenosine Diphosphate Ribose
  • Humans
  • Fibroblasts
  • Endonucleases
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Okano, S., Lan, L., Caldecott, K. W., Mori, T., & Yasui, A. (2003). Spatial and temporal cellular responses to single-strand breaks in human cells. Mol Cell Biol, 23(11), 3974–3981. https://doi.org/10.1128/MCB.23.11.3974-3981.2003
Okano, Satoshi, Li Lan, Keith W. Caldecott, Toshio Mori, and Akira Yasui. “Spatial and temporal cellular responses to single-strand breaks in human cells.Mol Cell Biol 23, no. 11 (June 2003): 3974–81. https://doi.org/10.1128/MCB.23.11.3974-3981.2003.
Okano S, Lan L, Caldecott KW, Mori T, Yasui A. Spatial and temporal cellular responses to single-strand breaks in human cells. Mol Cell Biol. 2003 Jun;23(11):3974–81.
Okano, Satoshi, et al. “Spatial and temporal cellular responses to single-strand breaks in human cells.Mol Cell Biol, vol. 23, no. 11, June 2003, pp. 3974–81. Pubmed, doi:10.1128/MCB.23.11.3974-3981.2003.
Okano S, Lan L, Caldecott KW, Mori T, Yasui A. Spatial and temporal cellular responses to single-strand breaks in human cells. Mol Cell Biol. 2003 Jun;23(11):3974–3981.

Published In

Mol Cell Biol

DOI

ISSN

0270-7306

Publication Date

June 2003

Volume

23

Issue

11

Start / End Page

3974 / 3981

Location

United States

Related Subject Headings

  • X-ray Repair Cross Complementing Protein 1
  • Ultraviolet Rays
  • Transcription Factors
  • Proteins
  • Protein Structure, Tertiary
  • Proliferating Cell Nuclear Antigen
  • Poly Adenosine Diphosphate Ribose
  • Humans
  • Fibroblasts
  • Endonucleases