Coherent Microwave Control of Ultracold ^{23}Na^{40}K Molecules.
We demonstrate coherent microwave control of rotational and hyperfine states of trapped, ultracold, and chemically stable ^{23}Na^{40}K molecules. Starting with all molecules in the absolute rovibrational and hyperfine ground state, we study rotational transitions in combined magnetic and electric fields and explain the rich hyperfine structure. Following the transfer of the entire molecular ensemble into a single hyperfine level of the first rotationally excited state, J=1, we observe lifetimes of more than 3 s, comparable to those in the rovibrational ground state, J=0. Long-lived ensembles and full quantum state control are prerequisites for the use of ultracold molecules in quantum simulation, precision measurements, and quantum information processing.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences