Skip to main content

Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

Publication ,  Journal Article
Irion, FW; Kahn, BH; Schreier, MM; Fetzer, EJ; Fishbein, E; Fu, D; Kalmus, P; Chris, RW; Wong, S; Yue, Q
Published in: Atmospheric Measurement Techniques
February 19, 2018

Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ~45 to ~13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.

Duke Scholars

Published In

Atmospheric Measurement Techniques

DOI

EISSN

1867-8548

ISSN

1867-1381

Publication Date

February 19, 2018

Volume

11

Issue

2

Start / End Page

971 / 995

Related Subject Headings

  • Meteorology & Atmospheric Sciences
  • 3701 Atmospheric sciences
  • 0401 Atmospheric Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Irion, F. W., Kahn, B. H., Schreier, M. M., Fetzer, E. J., Fishbein, E., Fu, D., … Yue, Q. (2018). Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS. Atmospheric Measurement Techniques, 11(2), 971–995. https://doi.org/10.5194/amt-11-971-2018
Irion, F. W., B. H. Kahn, M. M. Schreier, E. J. Fetzer, E. Fishbein, D. Fu, P. Kalmus, R. W. Chris, S. Wong, and Q. Yue. “Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS.” Atmospheric Measurement Techniques 11, no. 2 (February 19, 2018): 971–95. https://doi.org/10.5194/amt-11-971-2018.
Irion FW, Kahn BH, Schreier MM, Fetzer EJ, Fishbein E, Fu D, et al. Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS. Atmospheric Measurement Techniques. 2018 Feb 19;11(2):971–95.
Irion, F. W., et al. “Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS.” Atmospheric Measurement Techniques, vol. 11, no. 2, Feb. 2018, pp. 971–95. Scopus, doi:10.5194/amt-11-971-2018.
Irion FW, Kahn BH, Schreier MM, Fetzer EJ, Fishbein E, Fu D, Kalmus P, Chris RW, Wong S, Yue Q. Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS. Atmospheric Measurement Techniques. 2018 Feb 19;11(2):971–995.

Published In

Atmospheric Measurement Techniques

DOI

EISSN

1867-8548

ISSN

1867-1381

Publication Date

February 19, 2018

Volume

11

Issue

2

Start / End Page

971 / 995

Related Subject Headings

  • Meteorology & Atmospheric Sciences
  • 3701 Atmospheric sciences
  • 0401 Atmospheric Sciences