Skip to main content
Journal cover image

Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era

Publication ,  Journal Article
Kipp, MA; Stüeken, EE; Yun, M; Bekker, A; Buick, R
Published in: Earth and Planetary Science Letters
October 15, 2018

Nitrogen isotope ratios in marine sedimentary rocks have become a widely used biogeochemical proxy that records information about nutrient cycling and redox conditions in Earth's distant past. While the past two decades have seen considerable progress in our understanding of the Precambrian sedimentary nitrogen isotope record, it is still compromised by substantial temporal gaps. Furthermore, quantitative links between nitrogen isotope data, marine redox conditions, and nutrient availability are largely lacking in a Precambrian context. Here we present new nitrogen isotope data from a suite of marine sedimentary rocks with ca. 2.4 to 1.8 Ga ages, spanning the Great Oxidation Event in the Paleoproterozoic, to better constrain the response of the nitrogen cycle to the first major redox transition in Earth's history. We further construct a simple box model to describe the major pathways that influenced the nitrogen isotope mass balance of the Precambrian ocean and use this as a platform to evaluate the Precambrian nitrogen isotope record. Within this framework, we find that consistently positive nitrogen isotope values, ranging from +1.1 to +7.7‰ across the early Paleoproterozoic are strong evidence for an expansion of oxygenated surface waters. Since the isotopic signature of aerobic nitrogen cycling is recorded in the biomass of nitrate-assimilating organisms, this implicates widespread nitrate bioavailability in this time interval. The decline in offshore nitrogen isotope ratios in the Mesoproterozoic is consistent with the contraction of oxic waters, which could have inhibited the expansion of nitrate-fueled ecosystems to pelagic waters until the widespread oxygenation of the ocean in the latest Neoproterozoic to early Phanerozoic.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Earth and Planetary Science Letters

DOI

ISSN

0012-821X

Publication Date

October 15, 2018

Volume

500

Start / End Page

117 / 126

Related Subject Headings

  • Geochemistry & Geophysics
  • 51 Physical sciences
  • 37 Earth sciences
  • 04 Earth Sciences
  • 02 Physical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Kipp, M. A., Stüeken, E. E., Yun, M., Bekker, A., & Buick, R. (2018). Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era. Earth and Planetary Science Letters, 500, 117–126. https://doi.org/10.1016/j.epsl.2018.08.007
Kipp, M. A., E. E. Stüeken, M. Yun, A. Bekker, and R. Buick. “Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era.” Earth and Planetary Science Letters 500 (October 15, 2018): 117–26. https://doi.org/10.1016/j.epsl.2018.08.007.
Kipp MA, Stüeken EE, Yun M, Bekker A, Buick R. Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era. Earth and Planetary Science Letters. 2018 Oct 15;500:117–26.
Kipp, M. A., et al. “Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era.” Earth and Planetary Science Letters, vol. 500, Oct. 2018, pp. 117–26. Scopus, doi:10.1016/j.epsl.2018.08.007.
Kipp MA, Stüeken EE, Yun M, Bekker A, Buick R. Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era. Earth and Planetary Science Letters. 2018 Oct 15;500:117–126.
Journal cover image

Published In

Earth and Planetary Science Letters

DOI

ISSN

0012-821X

Publication Date

October 15, 2018

Volume

500

Start / End Page

117 / 126

Related Subject Headings

  • Geochemistry & Geophysics
  • 51 Physical sciences
  • 37 Earth sciences
  • 04 Earth Sciences
  • 02 Physical Sciences