Skip to main content

Uniform bounds for rational points on hyperelliptic fibrations

Publication ,  Journal Article
Dante, B; Tim, B
Published in: Annali Della Scuola Normale Superiore Di Pisa Classe Di Scienze
January 1, 2023

We apply a variant of the square-sieve to produce an upper bound for the number of rational points of bounded height on a family of surfaces that admit a fibration over P1 whose general fibre is a hyperelliptic curve. The implied constant does not depend on the coefficients of the polynomial defining the surface.

Published In

Annali Della Scuola Normale Superiore Di Pisa Classe Di Scienze

DOI

EISSN

2036-2145

ISSN

0391-173X

Publication Date

January 1, 2023

Volume

24

Issue

1

Start / End Page

173 / 204

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Dante, B., & Tim, B. (2023). Uniform bounds for rational points on hyperelliptic fibrations. Annali Della Scuola Normale Superiore Di Pisa Classe Di Scienze, 24(1), 173–204. https://doi.org/10.2422/2036-2145.202010_018
Dante, B., and B. Tim. “Uniform bounds for rational points on hyperelliptic fibrations.” Annali Della Scuola Normale Superiore Di Pisa Classe Di Scienze 24, no. 1 (January 1, 2023): 173–204. https://doi.org/10.2422/2036-2145.202010_018.
Dante B, Tim B. Uniform bounds for rational points on hyperelliptic fibrations. Annali Della Scuola Normale Superiore Di Pisa Classe Di Scienze. 2023 Jan 1;24(1):173–204.
Dante, B., and B. Tim. “Uniform bounds for rational points on hyperelliptic fibrations.” Annali Della Scuola Normale Superiore Di Pisa Classe Di Scienze, vol. 24, no. 1, Jan. 2023, pp. 173–204. Scopus, doi:10.2422/2036-2145.202010_018.
Dante B, Tim B. Uniform bounds for rational points on hyperelliptic fibrations. Annali Della Scuola Normale Superiore Di Pisa Classe Di Scienze. 2023 Jan 1;24(1):173–204.

Published In

Annali Della Scuola Normale Superiore Di Pisa Classe Di Scienze

DOI

EISSN

2036-2145

ISSN

0391-173X

Publication Date

January 1, 2023

Volume

24

Issue

1

Start / End Page

173 / 204

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics