Microstructurally-informed stochastic inhomogeneity of material properties and material symmetries in 3D-printed 316 L stainless steel
Stochastic mesoscale inhomogeneity of material properties and material symmetries are investigated in a 3D-printed material. The analysis involves a spatially-dependent characterization of the microstructure in 316 L stainless steel, obtained through electron backscatter diffraction imaging. These data are subsequently fed into a Voigt–Reuss–Hill homogenization approximation to produce maps of elasticity tensor coefficients along the path of experimental probing. Information-theoretic stochastic models corresponding to this stiffness random field are then introduced. The case of orthotropic fields is first defined as a high-fidelity model, the realizations of which are consistent with the elasticity maps. To investigate the role of material symmetries, an isotropic approximation is next introduced through ad-hoc projections (using various metrics). Both stochastic representations are identified using the dataset. In particular, the correlation length along the characterization path is identified using a maximum likelihood estimator. Uncertainty propagation is finally performed on a complex geometry, using a Monte Carlo analysis. It is shown that mechanical predictions in the linear elastic regime are mostly sensitive to material symmetry but weakly depend on the spatial correlation length in the considered propagation scenario.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Mathematics
- 4017 Mechanical engineering
- 4005 Civil engineering
- 0915 Interdisciplinary Engineering
- 0913 Mechanical Engineering
- 0905 Civil Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Mathematics
- 4017 Mechanical engineering
- 4005 Civil engineering
- 0915 Interdisciplinary Engineering
- 0913 Mechanical Engineering
- 0905 Civil Engineering