Skip to main content
Journal cover image

Generalizations of the Schrödinger maximal operator: building arithmetic counterexamples

Publication ,  Journal Article
Chu, R; Pierce, LB
Published in: Journal d'Analyse Mathematique
December 1, 2023

Let TtP2f(x) denote the solution to the linear Schrödinger equation at time t, with initial value function f, where P 2(ξ) = ∣ξ∣2. In 1980, Carleson asked for the minimal regularity of f that is required for the pointwise a.e. convergence of TtP2f(x) to f(x) as t → 0. This was recently resolved by work of Bourgain, and Du and Zhang. This paper considers more general dispersive equations, and constructs counterexamples to pointwise a.e. convergence for a new class of real polynomial symbols P of arbitrary degree, motivated by a broad question: what occurs for symbols lying in a generic class? We construct the counterexamples using number-theoretic methods, in particular the Weil bound for exponential sums, and the theory of Dwork-regular forms. This is the first case in which counterexamples are constructed for indecomposable forms, moving beyond special regimes where P has some diagonal structure.

Duke Scholars

Published In

Journal d'Analyse Mathematique

DOI

EISSN

1565-8538

ISSN

0021-7670

Publication Date

December 1, 2023

Volume

151

Issue

1

Start / End Page

59 / 114

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Chu, R., & Pierce, L. B. (2023). Generalizations of the Schrödinger maximal operator: building arithmetic counterexamples. Journal d’Analyse Mathematique, 151(1), 59–114. https://doi.org/10.1007/s11854-023-0335-7
Chu, R., and L. B. Pierce. “Generalizations of the Schrödinger maximal operator: building arithmetic counterexamples.” Journal d’Analyse Mathematique 151, no. 1 (December 1, 2023): 59–114. https://doi.org/10.1007/s11854-023-0335-7.
Chu R, Pierce LB. Generalizations of the Schrödinger maximal operator: building arithmetic counterexamples. Journal d’Analyse Mathematique. 2023 Dec 1;151(1):59–114.
Chu, R., and L. B. Pierce. “Generalizations of the Schrödinger maximal operator: building arithmetic counterexamples.” Journal d’Analyse Mathematique, vol. 151, no. 1, Dec. 2023, pp. 59–114. Scopus, doi:10.1007/s11854-023-0335-7.
Chu R, Pierce LB. Generalizations of the Schrödinger maximal operator: building arithmetic counterexamples. Journal d’Analyse Mathematique. 2023 Dec 1;151(1):59–114.
Journal cover image

Published In

Journal d'Analyse Mathematique

DOI

EISSN

1565-8538

ISSN

0021-7670

Publication Date

December 1, 2023

Volume

151

Issue

1

Start / End Page

59 / 114

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics