Skip to main content

Realization of two-sublattice exchange physics in the triangular lattice compound Ba3Er(BO3)3

Publication ,  Journal Article
Ennis, M; Bag, R; Liu, C; Dissanayake, SE; Kolesnikov, AI; Balents, L; Haravifard, S
Published in: Communications Physics
December 1, 2024

Geometric frustration commonly occurs in materials where magnetic rare-earth ions are arranged on a two-dimensional triangular lattice. These compounds have been gaining significant attention lately, as they hold the promise of revealing unique quantum states of matter. However, little attention has been devoted to cases where spin- 12 rare-earth ions are substituted with ions exhibiting higher spin multiplicities. Here, we successfully synthesize high-quality single crystal samples of Ba3Er(BO3)3, which is part of the family of triangular lattice compounds. In our experiments, conducted at extremely low temperatures (around 100 millikelvin), we observe two sublattice exchange interactions in Ba3Er(BO3)3, resulting in the hexagonal lattice spins exhibiting a mixture of ferromagnetic and antiferromagnetic tendencies. Our theoretical analysis suggest that this behavior may be attributed to the distinct positions of magnetic ions within the crystal lattice. However, the presence of quantum effects adds an extra layer of complexity to our findings, calling for further exploration.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Communications Physics

DOI

EISSN

2399-3650

Publication Date

December 1, 2024

Volume

7

Issue

1

Related Subject Headings

  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Ennis, M., Bag, R., Liu, C., Dissanayake, S. E., Kolesnikov, A. I., Balents, L., & Haravifard, S. (2024). Realization of two-sublattice exchange physics in the triangular lattice compound Ba3Er(BO3)3. Communications Physics, 7(1). https://doi.org/10.1038/s42005-024-01532-w
Ennis, M., R. Bag, C. Liu, S. E. Dissanayake, A. I. Kolesnikov, L. Balents, and S. Haravifard. “Realization of two-sublattice exchange physics in the triangular lattice compound Ba3Er(BO3)3.” Communications Physics 7, no. 1 (December 1, 2024). https://doi.org/10.1038/s42005-024-01532-w.
Ennis M, Bag R, Liu C, Dissanayake SE, Kolesnikov AI, Balents L, et al. Realization of two-sublattice exchange physics in the triangular lattice compound Ba3Er(BO3)3. Communications Physics. 2024 Dec 1;7(1).
Ennis, M., et al. “Realization of two-sublattice exchange physics in the triangular lattice compound Ba3Er(BO3)3.” Communications Physics, vol. 7, no. 1, Dec. 2024. Scopus, doi:10.1038/s42005-024-01532-w.
Ennis M, Bag R, Liu C, Dissanayake SE, Kolesnikov AI, Balents L, Haravifard S. Realization of two-sublattice exchange physics in the triangular lattice compound Ba3Er(BO3)3. Communications Physics. 2024 Dec 1;7(1).

Published In

Communications Physics

DOI

EISSN

2399-3650

Publication Date

December 1, 2024

Volume

7

Issue

1

Related Subject Headings

  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering