Skip to main content
Journal cover image

TEsoNet: knowledge transfer in surgical phase recognition from laparoscopic sleeve gastrectomy to the laparoscopic part of Ivor-Lewis esophagectomy.

Publication ,  Journal Article
Eckhoff, JA; Ban, Y; Rosman, G; Müller, DT; Hashimoto, DA; Witkowski, E; Babic, B; Rus, D; Bruns, C; Fuchs, HF; Meireles, O
Published in: Surg Endosc
May 2023

BACKGROUND: Surgical phase recognition using computer vision presents an essential requirement for artificial intelligence-assisted analysis of surgical workflow. Its performance is heavily dependent on large amounts of annotated video data, which remain a limited resource, especially concerning highly specialized procedures. Knowledge transfer from common to more complex procedures can promote data efficiency. Phase recognition models trained on large, readily available datasets may be extrapolated and transferred to smaller datasets of different procedures to improve generalizability. The conditions under which transfer learning is appropriate and feasible remain to be established. METHODS: We defined ten operative phases for the laparoscopic part of Ivor-Lewis Esophagectomy through expert consensus. A dataset of 40 videos was annotated accordingly. The knowledge transfer capability of an established model architecture for phase recognition (CNN + LSTM) was adapted to generate a "Transferal Esophagectomy Network" (TEsoNet) for co-training and transfer learning from laparoscopic Sleeve Gastrectomy to the laparoscopic part of Ivor-Lewis Esophagectomy, exploring different training set compositions and training weights. RESULTS: The explored model architecture is capable of accurate phase detection in complex procedures, such as Esophagectomy, even with low quantities of training data. Knowledge transfer between two upper gastrointestinal procedures is feasible and achieves reasonable accuracy with respect to operative phases with high procedural overlap. CONCLUSION: Robust phase recognition models can achieve reasonable yet phase-specific accuracy through transfer learning and co-training between two related procedures, even when exposed to small amounts of training data of the target procedure. Further exploration is required to determine appropriate data amounts, key characteristics of the training procedure and temporal annotation methods required for successful transferal phase recognition. Transfer learning across different procedures addressing small datasets may increase data efficiency. Finally, to enable the surgical application of AI for intraoperative risk mitigation, coverage of rare, specialized procedures needs to be explored.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Surg Endosc

DOI

EISSN

1432-2218

Publication Date

May 2023

Volume

37

Issue

5

Start / End Page

4040 / 4053

Location

Germany

Related Subject Headings

  • Surgery
  • Retrospective Studies
  • Laparoscopy
  • Humans
  • Gastrectomy
  • Esophagectomy
  • Esophageal Neoplasms
  • Artificial Intelligence
  • 3202 Clinical sciences
  • 1103 Clinical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Eckhoff, J. A., Ban, Y., Rosman, G., Müller, D. T., Hashimoto, D. A., Witkowski, E., … Meireles, O. (2023). TEsoNet: knowledge transfer in surgical phase recognition from laparoscopic sleeve gastrectomy to the laparoscopic part of Ivor-Lewis esophagectomy. Surg Endosc, 37(5), 4040–4053. https://doi.org/10.1007/s00464-023-09971-2
Eckhoff, J. A., Y. Ban, G. Rosman, D. T. Müller, D. A. Hashimoto, E. Witkowski, B. Babic, et al. “TEsoNet: knowledge transfer in surgical phase recognition from laparoscopic sleeve gastrectomy to the laparoscopic part of Ivor-Lewis esophagectomy.Surg Endosc 37, no. 5 (May 2023): 4040–53. https://doi.org/10.1007/s00464-023-09971-2.
Eckhoff JA, Ban Y, Rosman G, Müller DT, Hashimoto DA, Witkowski E, et al. TEsoNet: knowledge transfer in surgical phase recognition from laparoscopic sleeve gastrectomy to the laparoscopic part of Ivor-Lewis esophagectomy. Surg Endosc. 2023 May;37(5):4040–53.
Eckhoff, J. A., et al. “TEsoNet: knowledge transfer in surgical phase recognition from laparoscopic sleeve gastrectomy to the laparoscopic part of Ivor-Lewis esophagectomy.Surg Endosc, vol. 37, no. 5, May 2023, pp. 4040–53. Pubmed, doi:10.1007/s00464-023-09971-2.
Eckhoff JA, Ban Y, Rosman G, Müller DT, Hashimoto DA, Witkowski E, Babic B, Rus D, Bruns C, Fuchs HF, Meireles O. TEsoNet: knowledge transfer in surgical phase recognition from laparoscopic sleeve gastrectomy to the laparoscopic part of Ivor-Lewis esophagectomy. Surg Endosc. 2023 May;37(5):4040–4053.
Journal cover image

Published In

Surg Endosc

DOI

EISSN

1432-2218

Publication Date

May 2023

Volume

37

Issue

5

Start / End Page

4040 / 4053

Location

Germany

Related Subject Headings

  • Surgery
  • Retrospective Studies
  • Laparoscopy
  • Humans
  • Gastrectomy
  • Esophagectomy
  • Esophageal Neoplasms
  • Artificial Intelligence
  • 3202 Clinical sciences
  • 1103 Clinical Sciences