Optical design study for the 860 GHz first-light camera module of CCAT-p
The CCAT-prime telescope, also known as the Fred Young Submillimeter Telescope (FYST), has an unblocked 6-m aperture designed for an extraordinarily wide field-of-view to be used in cosmological and galactic studies. Located at 5600 m near ALMA, the site has extremely dry conditions which make it particularly suited for observations at shorter sub-mm wavelengths, such as 350 μm (860 GHz). These attributes make CCAT-prime a potential platform for the next generation "Stage IV"cosmic microwave background experiment to conduct cosmology surveys of the extragalactic sky. CCAT-prime is also ideal for polarization studies within the galaxy and time-domain observations of nearby protostars. Prime-Cam is the wide-field, first-light instrument for CCAT-prime which, when complete, will contain seven instrument modules, including cameras and spectrometers, spanning mm through sub-mm wavelengths. Not all receiver modules are currently funded-including the 350 μm (∼860 GHz) camera module that motivates the extraordinary high site of CCAT-p. Recognizing that a 350 mm first-light camera may be needed within the next 1-2 years, an optical design study was initiated where we purposely chose to reduce the scope, cost, and complexity while still preserving diffraction-limited optics, allowing for early science until the more powerful wide field science-grade camera module replaced it. In order to minimize the cost and scope of a first-light 860 GHz camera, the optics plan for reuse of existing detectors (ACT MBAC TES detectors or BLAST-TNG MKIDs) and interface with the existing instrument module cartridge planned for Prime-Cam. Further simplifications include restricting the field-of-view and utilizing on-Axis HDPE lenses without an anti-reflection layer. Discussion of optimal detector array F-lambda scaling, analysis of power loading, and feed horn coupling efficiency is included.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering