Skip to main content
Journal cover image

Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys

Publication ,  Journal Article
Vavagiakis, EM; Henderson, SW; Zheng, K; Cho, HM; Cothard, NF; Dober, B; Duff, SM; Gallardo, PA; Hilton, G; Hubmayr, J; Irwin, KD; Koopman, BJ ...
Published in: Journal of Low Temperature Physics
November 1, 2018

In the next decade, new ground-based cosmic microwave background (CMB) experiments such as Simons Observatory, CCAT-prime, and CMB-S4 will increase the number of detectors observing the CMB by an order of magnitude or more, dramatically improving our understanding of cosmology and astrophysics. These projects will deploy receivers with as many as hundreds of thousands of transition edge sensor (TES) bolometers coupled to superconducting quantum interference device (SQUID)-based readout systems. It is well known that superconducting devices such as TESes and SQUIDs are sensitive to magnetic fields. However, the effects of magnetic fields on TESes are not easily predicted due to the complex behavior of the superconducting transition, which motivates direct measurements of the magnetic sensitivity of these devices. We present comparative four-lead measurements of the critical temperature versus applied magnetic field of AlMn TESes varying in geometry, doping, and leg length, including Advanced ACT and POLARBEAR-2/Simons Array bolometers. MoCu ACTPol TESes are also tested and are found to be more sensitive to magnetic fields than the AlMn devices. We present an observation of weak-link-like behavior in AlMn TESes at low critical currents. We also compare measurements of magnetic sensitivity for time division multiplexing SQUIDs and frequency division multiplexing microwave (μMUX) rf-SQUIDs. We discuss the implications of our measurements on the magnetic shielding required for future experiments that aim to map the CMB to near-fundamental limits.

Duke Scholars

Published In

Journal of Low Temperature Physics

DOI

EISSN

1573-7357

ISSN

0022-2291

Publication Date

November 1, 2018

Volume

193

Issue

3-4

Start / End Page

288 / 297

Related Subject Headings

  • General Physics
  • 5104 Condensed matter physics
  • 5103 Classical physics
  • 0204 Condensed Matter Physics
  • 0203 Classical Physics
  • 0105 Mathematical Physics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Vavagiakis, E. M., Henderson, S. W., Zheng, K., Cho, H. M., Cothard, N. F., Dober, B., … Westbrook, B. (2018). Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys. Journal of Low Temperature Physics, 193(3–4), 288–297. https://doi.org/10.1007/s10909-018-1920-5
Vavagiakis, E. M., S. W. Henderson, K. Zheng, H. M. Cho, N. F. Cothard, B. Dober, S. M. Duff, et al. “Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys.” Journal of Low Temperature Physics 193, no. 3–4 (November 1, 2018): 288–97. https://doi.org/10.1007/s10909-018-1920-5.
Vavagiakis EM, Henderson SW, Zheng K, Cho HM, Cothard NF, Dober B, et al. Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys. Journal of Low Temperature Physics. 2018 Nov 1;193(3–4):288–97.
Vavagiakis, E. M., et al. “Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys.” Journal of Low Temperature Physics, vol. 193, no. 3–4, Nov. 2018, pp. 288–97. Scopus, doi:10.1007/s10909-018-1920-5.
Vavagiakis EM, Henderson SW, Zheng K, Cho HM, Cothard NF, Dober B, Duff SM, Gallardo PA, Hilton G, Hubmayr J, Irwin KD, Koopman BJ, Li D, Nati F, Niemack MD, Reintsema CD, Simon S, Stevens JR, Suzuki A, Westbrook B. Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys. Journal of Low Temperature Physics. 2018 Nov 1;193(3–4):288–297.
Journal cover image

Published In

Journal of Low Temperature Physics

DOI

EISSN

1573-7357

ISSN

0022-2291

Publication Date

November 1, 2018

Volume

193

Issue

3-4

Start / End Page

288 / 297

Related Subject Headings

  • General Physics
  • 5104 Condensed matter physics
  • 5103 Classical physics
  • 0204 Condensed Matter Physics
  • 0203 Classical Physics
  • 0105 Mathematical Physics