Galaxy bias in the era of LSST: perturbative bias expansions
Upcoming imaging surveys will allow for high signal-to-noise measurements of galaxy clustering at small scales. In this work, we present the results of the Rubin Observatory Legacy Survey of Space and Time (LSST) bias challenge, the goal of which is to compare the performance of different nonlinear galaxy bias models in the context of LSST Year 10 (Y10) data. Specifically, we compare two perturbative approaches, Lagrangian perturbation theory (LPT) and Eulerian perturbation theory (EPT) to two variants of Hybrid Effective Field Theory (HEFT), with our fiducial implementation of these models including terms up to second order in the bias expansion as well as nonlocal bias and deviations from Poissonian stochasticity. We consider a variety of different simulated galaxy samples and test the performance of the bias models in a tomographic joint analysis of LSST-Y10-like galaxy clustering, galaxy-galaxy-lensing and cosmic shear. We find both HEFT methods as well as LPT and EPT combined with non-perturbative predictions for the matter power spectrum to yield unbiased constraints on cosmological parameters up to at least a maximal scale of k
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Issue
Related Subject Headings
- Nuclear & Particles Physics
- 5107 Particle and high energy physics
- 5101 Astronomical sciences
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
- 0201 Astronomical and Space Sciences
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Related Subject Headings
- Nuclear & Particles Physics
- 5107 Particle and high energy physics
- 5101 Astronomical sciences
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
- 0201 Astronomical and Space Sciences