Skip to main content

A comprehensive lung CT landmark pair dataset for evaluating deformable image registration algorithms.

Publication ,  Journal Article
Criscuolo, ER; Fu, Y; Hao, Y; Zhang, Z; Yang, D
Published in: Med Phys
May 2024

PURPOSE: Deformable image registration (DIR) is a key enabling technology in many diagnostic and therapeutic tasks, but often does not meet the required robustness and accuracy for supporting clinical tasks. This is in large part due to a lack of high-quality benchmark datasets by which new DIR algorithms can be evaluated. Our team was supported by the National Institute of Biomedical Imaging and Bioengineering to develop DIR benchmark dataset libraries for multiple anatomical sites, comprising of large numbers of highly accurate landmark pairs on matching blood vessel bifurcations. Here we introduce our lung CT DIR benchmark dataset library, which was developed to improve upon the number and distribution of landmark pairs in current public lung CT benchmark datasets. ACQUISITION AND VALIDATION METHODS: Thirty CT image pairs were acquired from several publicly available repositories as well as authors' institution with IRB approval. The data processing workflow included multiple steps: (1) The images were denoised. (2) Lungs, airways, and blood vessels were automatically segmented. (3) Bifurcations were directly detected on the skeleton of the segmented vessel tree. (4) Falsely identified bifurcations were filtered out using manually defined rules. (5) A DIR was used to project landmarks detected on the first image onto the second image of the image pair to form landmark pairs. (6) Landmark pairs were manually verified. This workflow resulted in an average of 1262 landmark pairs per image pair. Estimates of the landmark pair target registration error (TRE) using digital phantoms were 0.4 mm ± 0.3 mm. DATA FORMAT AND USAGE NOTES: The data is published in Zenodo at https://doi.org/10.5281/zenodo.8200423. Instructions for use can be found at https://github.com/deshanyang/Lung-DIR-QA. POTENTIAL APPLICATIONS: The dataset library generated in this work is the largest of its kind to date and will provide researchers with a new and improved set of ground truth benchmarks for quantitatively validating DIR algorithms within the lung.

Duke Scholars

Published In

Med Phys

DOI

EISSN

2473-4209

Publication Date

May 2024

Volume

51

Issue

5

Start / End Page

3806 / 3817

Location

United States

Related Subject Headings

  • Tomography, X-Ray Computed
  • Nuclear Medicine & Medical Imaging
  • Lung
  • Image Processing, Computer-Assisted
  • Humans
  • Algorithms
  • 5105 Medical and biological physics
  • 4003 Biomedical engineering
  • 1112 Oncology and Carcinogenesis
  • 0903 Biomedical Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Criscuolo, E. R., Fu, Y., Hao, Y., Zhang, Z., & Yang, D. (2024). A comprehensive lung CT landmark pair dataset for evaluating deformable image registration algorithms. Med Phys, 51(5), 3806–3817. https://doi.org/10.1002/mp.17026
Criscuolo, Edward R., Yabo Fu, Yao Hao, Zhendong Zhang, and Deshan Yang. “A comprehensive lung CT landmark pair dataset for evaluating deformable image registration algorithms.Med Phys 51, no. 5 (May 2024): 3806–17. https://doi.org/10.1002/mp.17026.
Criscuolo ER, Fu Y, Hao Y, Zhang Z, Yang D. A comprehensive lung CT landmark pair dataset for evaluating deformable image registration algorithms. Med Phys. 2024 May;51(5):3806–17.
Criscuolo, Edward R., et al. “A comprehensive lung CT landmark pair dataset for evaluating deformable image registration algorithms.Med Phys, vol. 51, no. 5, May 2024, pp. 3806–17. Pubmed, doi:10.1002/mp.17026.
Criscuolo ER, Fu Y, Hao Y, Zhang Z, Yang D. A comprehensive lung CT landmark pair dataset for evaluating deformable image registration algorithms. Med Phys. 2024 May;51(5):3806–3817.

Published In

Med Phys

DOI

EISSN

2473-4209

Publication Date

May 2024

Volume

51

Issue

5

Start / End Page

3806 / 3817

Location

United States

Related Subject Headings

  • Tomography, X-Ray Computed
  • Nuclear Medicine & Medical Imaging
  • Lung
  • Image Processing, Computer-Assisted
  • Humans
  • Algorithms
  • 5105 Medical and biological physics
  • 4003 Biomedical engineering
  • 1112 Oncology and Carcinogenesis
  • 0903 Biomedical Engineering